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ABSTRACT

The lattice Boltzmann method (LBM) has been emerging as a promising alternative CFD approach

for complex fluid flows. With LBM, no-slip/free-slip wall boundary conditions are implemented via

straightforward particle bounce-back/specular reflections on a solid surface, thus enable the use of

Cartesian grid for accurate boundary representation. For curved boundary that is commonly encoun-

tered with complex geometry, available point-wise based LBM extrapolation/interpolation boundary

schemes can not guarantee the exact hydrodynamic flux conditions. To address this fundamental is-

sue, a volumetric LBM boundary scheme was proposed in 1998, which ensures an exact treatment of

hydrodynamic fluxes on solid surface and establishes a generic framework for realizing hydrodynamic

boundary conditions on curved surface.

This dissertation presents the development of an improved volumetric LBM boundary scheme. The

basic idea is when reflecting (scattering) back the fluid particles from solid boundary, particles should

be distributed in the affected volume according to local flow information rather than uniformly as in

the original volumetric LBM boundary formulation. To realize this, a scattering correction procedure

is formulated and added to the originally proposed volumetric LBM boundary scheme framework. In

particular, the procedure redistributes the surface scattered particles based on local velocity variation.

As a result, it reduces the solution dependence on actual boundary location/orientation with respect to

the computational grid, demonstrates an improved order of accuracy for flow solutions with arbitrarily

located boundary. Accuracy of this approach has been demonstrated on typical flow benchmark prob-

lems that involve curved boundaries. In the second part of this dissertation, the proposed volumetric

LBM boundary scheme is extended to sliding-mesh interface condition for flow simulation involving

rotating geometries. A volumetric LBM sliding-mesh interface scheme couples the flow solutions on

both sides of sliding interface, and conserves the mass and momentum flux across it. Accuracy of this

scheme is demonstrated by performing a LBM-sliding mesh simulation of flow past a rotating propeller.
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CHAPTER 1. INTRODUCTION

1.1 Introduction & background

In the last two decades, owing to the technology advancements in computer hardware, high per-

formance computing and efficient numerical algorithms, computational fluid dynamics (CFD) has been

widely applied not only in the areas of scientific investigation of complex flow phenomena (Chen and

Doolen (1998), Aidun and Clausen (2010), Passalacqua and Fox (2011)), but also in many areas of

engineering applications that involve fluid flow (Agarwal (1999), Schetz (2001), Katz (2006), Chen

et al. (2003), Shih (2008)). It has become an integral part of simulation based product optimization

and design process (Jameson (1999), Zitney and Syamlal (2002), McCorkle et al. (2003), Johnson et al.

(2005)). With CFD, a fluid domain is divided into a set of discrete spatial cells constituting a grid sys-

tem, the governing equations that describe the flow field are solved numerically on the grid system. For

flow problems involve complex geometries, conventional body-confirming grids that are generated by

either multi-block oversetting grid (Chan and Buning (1995), Chan (2009), Meakin (2001), Wang and

Parthasarathy (2000)) or unstructured grid methods (Mavriplis (1997), Anderson et al. (2005), Wang

(2007)) can be used for the numerical solution. Alternatively, a Cartesian grid with special treatment on

the non-confirming boundaries can also be applied (Aftosmis (1997), Peskin (2002), Wang and Srini-

vasan (2002)).

Conventional CFD methods are based on macroscopic level description via the Navier-Stokes equa-

tion, in which the fundamental fluid variables are velocity (or vorticity), pressure, and so on. Kinetic

theory based numerical methods, such as Direct Simulation Monte Carlo methods (DSMC), Quadra-

ture Method of Moments (QMOM), and Lattice Boltzmann methods (LBM), have been emerging as

promising alternative CFD approaches for simulation of complex fluid flows (Bird (1994), Fox (2008),

Chen and Doolen (1998), Aidun and Clausen (2010)). Among them, LBM has matured as a viable and
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efficient numerical tool for many CFD problems (Chen and Doolen (1998), Aidun and Clausen (2010)).

Unlike the conventional Navier-Stokes based numerical methods, LBM describes a fluid flow in terms

of a discrete kinetic equation based on the particle density distribution functions, namely the so called

Lattice Boltzmann equation (LBE). The macroscopic flow properties are direct results of the moments

of these particle distribution functions. In the hydrodynamic limit it has been shown that the LBE recov-

ers the Navier-Stokes equation (Chen et al. (1992), Qian et al. (1992)). It has also been demonstrated

recently that through a moment expansion procedure, LBE can be extended to describe fluid dynamics

beyond Navier-Stokes hydrodynamics (Shan et al. (2006)).

LBM has a number of attractive features when compared to traditional CFD methods (Chen and

Doolen (1998), Aidun and Clausen (2010)). It has nearly ideal scalability on parallel computers and is

very efficient for flow simulation on large scale applications (Pohl et al. (2003), Velivelli and Bryden

(2004), Clausen et al. (2010)). Its straightforward boundary condition implementation also enables nu-

merical solutions on a Cartesian grid system while maintaining exact conservations(Chen et al. (1998)).

This makes LBM very convenient for accurately handling flow that involves complex geometry. Be-

cause of its kinetic nature, it is also easy and more physical to model various complex fluid flows (Shan

and Chen (1993, 1994); Chen and Doolen (1998); Aidun and Clausen (2010)). Furthermore, the un-

steady Very-Large-Eddy-Simulation (VLES) turbulence model has been incorporated successfully into

LBM (Chen et al. (2003, 2004)). Its numerical accuracy and robustness have been widely demonstrated

and validated in scientific research as well as in real engineering applications (Chen et al. (2003); Chen

and Doolen (1998); Aidun and Clausen (2010)). On the other hand, LBM has its own limitations, such

as the compressibility effect in an LBM simulation may reduce the solution accuracy for incompressible

flows, and the use of cubic-cell based grid system can significient increase the computation cost when

local grid refinement is needed, these are the on-going research topics in the LBM community.

Among the many research fields in lattice Boltzmann community, boundary condition study is one

of the most active areas, especially when enforcing no-slip boundary condition on general geometry

with curved boundaries, the original standard bounce back boundary scheme degrades the accuracy of

LBM scheme to first order (Ginzbourg and Adler (1994); Noble et al. (1995)). Developing an accurate

and robust boundary condition algorithm for complex geometry is the first key element for reliable nu-

merical predictions with LBM. Secondly, to study the complex flows generated by a rotating machinery
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with LBM, the available black-box based impeller modeling approach is not suitable for true represen-

tations of the real geometry (Eggels (1996); Derksen et al. (1999); Lu et al. (2002)). To enable the LBM

sliding mesh capability for this type of flow with exact geometry effect, suitable sliding-mesh interface

boundary condition is needed. There is a lack of studies on developing suitable LBM boundary algo-

rithms for such sliding-mesh interface condition. The two topics above are the main focuses of current

research.

1.2 Literature review

1.2.1 Wall boundary conditions algorithms in LBM

In kinetic theory, specular reflection, diffuse reflection and bounce back (inverse) reflection are the

generic kinetic boundary conditions to model the interaction between gas particles and a solid wall

(Maxwell (1879); Schnute and Shinbrot (1973); Cercignani (1989)). By modeling particle dynamics

at the microscopic/mesoscopic level, desired hydrodynamic wall boundary physics on the macroscopic

level can be realized. For example, the particle specular reflection process reflects particle off from

the surface with the the angle of reflection equals the angle of incidence, and can be used to achieve a

“free-slip” velocity on a solid boundary. With the particle bounce-back reflection, a particle completely

reverses its velocity direction after interacting with a wall and is scattered back opposite to its incoming

direction. In the continuum flow regime, this effectively gives a zero-velocity (“no-slip”) boundary

condition related to the wall. The particle diffuse reflection process is generally used to describe a

slip velocity at the wall for high-Knudsen number flows at micro-channels (Gad-el Hak (1999, 2006)),

which assumes particle losts its memory about history and is reflected with Maximilian equilibrium

distribution from wall. These models have been commonly used in lattice gas automata for simulation

of the Navier-Stokes equations and is naturally adopted in LBM due to their kinetic nature and simplicity

in implementation (Wolfram (1986); Frisch et al. (1986, 1987); Lavallee et al. (1991)).

In the early studies of LBM wall boundary condition, standard bounce back scheme is widely used

to enforce the no-slip boundary condition on a flat surface. This is generally done in a point-wise

fashion and requires the solid wall boundary to be exactly aligned with the lattice cell boundary. Particle

distribution that resides on the nodes of lattice cell is advected from a fluid node to a wall node on the
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solid boundary, and is then reflected back along the inverse incoming velocity direction according to

the bounce-back process. Such an implementation was soon found to be of only first order accuracy

in space (Cornubert et al. (1991)) and has been verified by several follow up studies (Ziegler (1993);

Gallivan et al. (1997); Kandhai et al. (1999)). This degrades the overall numerical accuracy of the LBM

scheme since a standard LBM scheme is second order accurate in the interior of fluid domain (Chen

et al. (1996)).

Several LBM boundary schemes have been proposed to improve the numerical accuracy for realiz-

ing no-slip wall boundary conditions: Ziegler (1993) noticed that by shifting the solid wall boundary

into the fluid domain with one half lattice cell and putting the wall nodes used for bounce-back inside

the solid wall, the modified bounce-back scheme (half-way bounce back) can recover the desired sec-

ond order accuracy. Skordos (1993) introduced an extended collision operator and suggested to include

the near wall velocity gradient for updating the new equilibrium distribution function at the boundaries.

Although a first order difference scheme is applied for calculating the velocity gradient at the boundary

nodes, the boundary scheme still shows second order accuracy in space. Inamuro et al. (1995) proposed

a diffuse reflection based no-slip wall boundary condition implementation on a flat surface, where the

wall reflected distributions are assumed to be equilibrium distributions with a counter slip velocity. The

latter is solved by enforcing the fluid velocity in the vicinity of wall to be equal to the actual wall

velocity. Noble et al. (1995) developed a hydrodynamic boundary procedure to achieve second order

accuracy. This approach uses ghost wall nodes inside a solid wall for realizing the kinetic boundary con-

dition on a flat boundary: post-collide particle distributions from a ghost node are calculated with an

exact wall velocity and an approximated near wall fluid density. The accuracy of Noble’s hydrodynamic

boundary scheme is also evaluated by Gallivan et al. (1997) on a flow problem with array of cylinders,

and a second order of accuracy is confirmed. Chen et al. (1996) treated the LBM as a specific finite

difference scheme of the kinetic equation and proposed an extrapolation based bounce back method to

improve the accuracy for no-slip wall boundary condition. In this scheme, additional ghost cells were

introduced into the solid wall for the solution extrapolation, the bounce-backed particle distributions

in the near wall fluid nodes are directly extrapolated based on the distributions from the wall nodes

and ghost cell nodes. The wall nodes are treated as a part of the flow solution and their correspond-

ing particle equilibrium distributions are enforced to satisfy the macroscopic wall boundary conditions.
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This approach demonstrates a second order accuracy in space for simple flow problems with flat wall

boundaries. Ginzburg and d’Humières (2003) developed a multi-reflection boundary condition scheme

that can achieve third order kinetic accuracy with good numerical stability and has been extended to

moving boundaries, but it requires at least three fluid nodes to implement.

The above mentioned numerical schemes has been quite successful in improving numerical ac-

curacy for flows with flat-wall boundaries, such as Couette flow, lid-driven square cavity flow and

Poiseuille flow, etc. However, they are not designed for general lattice-wall boundary configurations

whose actual wall boundaries could have arbitrary locations/inclinations to the fluid cells. For problems

involving curved geometry, the actual boundary is usually approximated by a stair-case-reconstructed

shape for applying the boundary condition. For example, in Ladd (1994) and Ladd and Verberg (2001)

stair-cased geometry was used to enforce the half-way bounce back condition for studying particulate

suspensions. It should be noted that with such a geometry treatment, not only the fidelity of real ge-

ometry is lost, it may also introduce undesired numerical fluctuations in simulation along the boundary

that could contaminate the result. As pointed out in Chen et al. (1996), numerical accuracy of the so-

lution could be seriously compromised due to the stair-cased geometry approximation, this is further

confirmed in the study of Kandhai et al. (1999), where the solution accuracy was also found to be

dependent on the actual wall-inclination.

In order to treat the curved boundary accurately, Filippova and Ha̋nel (1997) and Filippova and

Ha̋nel (1998) proposed a boundary fitting scheme for flows involving complicated geometries that can

allow applying boundary condition at an exact boundary location. This scheme combines the particle

bounce-back process and a linear extrapolation of particle distribution It relies on a ghost cell inside

solid walls and applies a linear interpolation of particle distributions to enforce the boundary condition

at exact an fluid-solid interface location. The bounce-backed particle distributions from the solid wall

to the near wall fluid node is the post-collide particle distribution in the corresponding ghost node,

which can be linearly interpolated from the post-collide distribution in the near wall fluid nodes and a

fictitious equilibrium distribution evaluated at the corresponding ghost node. Velocity at the ghost node

location is linearly interpolated based on the imposed wall velocity and corresponding near wall fluid

velocity and is used to calculate the fictitious equilibrium distribution. This scheme can achieve second

order accuracy on problems involving curved geometries, however it suffers from a poor numerical
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instability, particularly when the near wall fluid node is very close to the solid boundary, unless an

approximation of ghost node velocity has to be applied to achieve robust prediction, together with a

local grid refinement for flow involves complicated geometries. After a closer examination of Filippova

and Ha̋nel (1997)’s scheme, Mei et al. (1999) identified that the numerical stability of FH scheme can be

further improved by extending the velocity interpolation stencil to include more near wall fluid nodes.

A series of systematic studies is performed to demonstrate the robustness of this improvement as well

as the desired second order accuracy. In a second study, Mei et al. (1999) found that the stability of

their former proposed algorithms is still poor if the the real boundary is too close to the solid nodes.

The scheme is further refined by placing the boundary node used for velocity interpolation in the closest

fluid nodes if the actual wall boundary is too close to a solid node. Verberg and Ladd (2000) developed a

sub-grid-scale boundary approach based on the percentage of near wall cell to perform the interpolation

and also combined with the half-way bounce back scheme to obtain second order accuracy.

Guo et al. (2002c) and Guo et al. (2002b) further extended the extrapolation method proposed by

Chen et al. (1996) to handle curved boundaries and decomposed the distribution function at a wall node

into its equilibrium and non-equilibrium parts, the post-collide distribution at the wall node includes

both the equilibrium distribution and the collision modified non-equilibrium one and is then advected

to the neighboring fluid node. In Guo et al. (2002c), both the equilibrium part and non-equilibrium

part are approximated based on the neighborhood node information. The non-equilibrium part of the

particle density distributions on the boundary can be directly approximated based on the corresponding

near wall fluid nodes information. On the other hand the equilibrium part is approximated based on

a modified equilibrium function evaluated at the near wall fluid nodes. In Guo et al. (2002b), the

equilibrium part is directly evaluated at the wall, with the reference wall density being extrapolated

based on the neighboring flow information. When wall boundary is too close to the nearest fluid nodes,

the second nearest fluid nodes was used to avoid numerical instability issue.

Instead of relying on the ghost nodes to construct fictitious particle distributions for extrapolation,

Bouzidi et al. (2001) proposed a curve boundary model that relies on the interpolation of particle distri-

butions from the internal fluid nodes. This scheme combines the bounce-back procedure and a spatial

interpolation of the scattered particle distributions according to the relative wall boundary location. This

scheme does not require the extrapolations from the ghost nodes in solid wall. In fact, only the near wall
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fluid nodes are used for the post-collide particle distribution interpolation. Based on the relative location

of the wall boundary to nearby fluid nodes, different algorithms are used to ensure proper interpolations.

the interpolation is done with separated set of the weighting factors. Bouzidi’s scheme requires at least

two fluid nodes for the interpolation and it can recover the halfway bounce back when the boundary is

located in the middle of fluid cell. Yu et al. (2003) unifies Bouzidi’s near wall interpolation procedure

and proposed a two-step sequential interpolations to avoid the discontinuity in the boundary treatment.

Both scheme demonstrate second order accuracy and can be extended to quadratic interpolations that

requires three fluid nodes.

Lallemand and Luo (2003) extend Bouzidi’s bounce-back/interpolation scheme to handle flow in-

volving moving boundaries and obtained satisfactory results. They pointed out that the interpolation

approaches destroy the mass conservation near the boundary and noticed that the inaccuracy in eval-

uating of momentum transfer can leads to a net mass flux at boundary. Lallemand and Luo (2003)

investigated the available point-wise based interpolation schemes and found the use of interpolations

break the mass conservations, since the inaccuracy of the evaluation of the momentum transfer at bound-

ary leads to a net mass flux. The loss of mass conservation significantly reduces the accuracy of the

computed momentum transfer at the boundary. Peng (2005) investigated the mass leakage issue in both

the Filippova and Ha̋nel (1997) and Mei et al. (1999) interpolation scheme, and found that the loss of

mass conservation at wall boundary can cause a serious numerical stability problem for the interpolation

based boundary scheme. He demonstrated that, by enforcing a zero net mass flux across wall boundary

with a proper chosen wall density, a mass-conserving boundary scheme with improved accuracy and

numerical stability can be obtained.

To avoid the mass conservation issue in a point-wise based interpolation scheme and to improve the

numerical stability, Kao and Yang (2008) proposed an interpolation-free approach for curved bound-

ary treatment in LB simulation. In this approach, a re-scaled post-collide particle distribution in the

near wall fluid node is directly bounce-backed at the solid surface after being advected to the curved

boundary, Rescaling of particle distributions is based on the concept of “coarse to fine” projection used

in lattice Boltzmann grid refinement. For example the distance from a near wall fluid node to solid

surface along the particle velocity direction defines a “fine” grid length scale while the regular lattice

size is used as reference length scale for “coarse” grid, these two length scales are used to derive the
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relaxation time factors for the “coarse to fine” projection of the non-equilibrium distributions. With

this non-equilibrium distribution being transferred from “coarse” grid to “fine” grid, the need for grid

interpolation/extrapolation is avoided. This modification can also improve the local mass conservation

since the equilibrium distribution part is not altered in the boundary process. Also as the coarse to fine

transformation increases the effective viscosity in the near wall fluid node, the numerical stability for

this approach is improved. However, when the solid wall is aligned with a lattice cell boundary, this ap-

proach will be reduced to a first-order accurate standard bounce back scheme. Lee and Lee (2010) also

proposed a boundary scheme that does not rely on interpolation/extrapolations. In this approach, the

collision process in the near wall cell is modified with an adaptive relaxation time scale. This relaxation

time scale is directly related to the partial cell volume that is formed by a wall boundary cutting scheme

through regular fluid cell, and is used to calculate the post-collide distributions in the near wall cell.

Such a simple modification improves the numerical stability of the boundary process and can achieve

an almost second-order accuracy. Chen et al. (2010) developed a heuristic scheme for curved boundary

based on the idea in surface chemistry. In this approach, the fluid particles can be absorbed into the

solid wall and then be re-scattered back after a time lag defined according to the time scale difference

between the regular particle advection time and the actual time for the near wall particles travel from

the nearest fluid node to solid wall. A local mass correction was applied to account for the accumulated

mass on the wall, this was done in the evaluation of the equilibrium distributions on the solid wall with

the help of ghost node inside the solid wall. In this way, both the local mass conservation as well as sec-

ond order accuracy can be obtained. This boundary treatment only requires the geometry information

and fluid distributions at the near wall point. A mass correction procedure was introduced to maintain

the conservation of local mass. This methods has shown to be second order accuracy in both space and

time.

To simulate flow in narrow gaps, Chun and Ladd (2007) developed an interpolation based boundary

scheme that requires a single fluid node to be involved. It utilizes the equilibrium distribution from the

solid surface as an additional interpolation point, this second-order accurate scheme is very effective for

situations where only one fluid node exists, since it’s impossible to construct linear interpolation with

typical interpolation schemes since they require two fluid nodes.

Instead of using interpolation to enforce the boundary condition, Feng and Michaelides (2004)
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proposed an immersed boundary treatment in LBM, the approach borrowed the idea from immerse

boundary methods and treat the solid boundary as a Lagrangian grid. The rigid body condition is

enforced by a penalty method, which assumes the solid boundary is deformable with a high stiffness

constant. The constraint force is calculated through the displacement of the “tracer” point and “marker”

point. The force density, due to the constrained force, is added to the lattice Boltzmann equation. The

method preserves the advantage of LBM for handling multiple particles and also provides an alternative

and accurate way to treat the solid-fluid interaction. The near wall flow field is solved by adding an

additional force density term in the lattice Boltzmann equation. This method can avoid the problems

of force fluctuations with a typical bounce back scheme, and enable LBM to simulate problems with

particle deformation and fluid-structure interaction.

The numerical issues that are associated with the interpolation based schemes are mainly due to the

pointwise representation of the distributions: in the vicinity of wall of arbitrary location, a particle may

not necessarily reflect back to its original location within a unit time step after interacting with wall.

Thus it has to rely on the use of a ghost node to construct interpolation and apply an ad-hoc numerical

modification to ensure the local mass conservation and maintain numerical stability. With a point-wise

interpolation scheme, evaluation of surface forces is non-trivial and the results can be contaminated by

induced numerical noise (Yu et al. (2003)).

Contrary to the point-wise implementation of boundary condition, Chen et al. (1998) proposed a

volumetric boundary approach that has more solid foundation: In this approach, the solid surface is

represented by a set of planar surface elements and the particles are distributed uniformly in each fluid

cell. The particle-surface dynamics is constructed in a volume that is uniquely defined by the surface

element and discrete incoming particle velocities. Specially, a surface element will collect/gather in-

coming particles within this volume and reflect/scatter them back into this volume. The scattered back

particles can then be evenly redistributed to the corresponding overlapped fluid cells. Such a volumetric

representation of boundary condition guarantees the exact conservation of mass since the net mass flux

across the surface element is zero, the resulting scheme has a very good numerical stability and has

also been extended to incorporate a turbulence wall shear-stress model for high Reynolds number flow

simulation. It has been successfully implemented in the commercial CFD software PowerFLOW and

applied in many industry applications (Chen et al. (2003)). Rohde et al. (2002) also applied this methods
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for solving flow problem involved moving boundaries and obtained good agreement with experimental

data.

Another notable feature of Chen’s volumetric boundary scheme is that the specular reflecting bound-

ary condition can be directly implemented with discrete velocities in the lattice model, this is done via

an intermediate particle-wall collision process and an elegant re-construction of wall equilibrium, to-

gether with an adjustment of particle scattering along the outgoing directions. This is much convenient

than the traditional reflection-projection method, where for an arbitrary positioned surface the reflected

velocity may not be coincident with any discrete velocity in the lattice model. Thus the incoming ve-

locity has to be reflected to its mirror pair, then the corresponding distributions are projected onto all

the discrete velocities (Qu et al. (2010)).

However the volumetric boundary scheme has noticeable numerical dissipation, particularly when

the wall boundary is not aligned with cell boundary (Rohde (2004); Li et al. (2004)), an systematic

study to identify its order of accuracy and potential deficiency is lacking, it’s one of the current research

objective to identify the source of this deficiencies and propose alternative solutions to improve its

solution accuracy.

1.2.2 CFD methods for sliding mesh simulation of flow with rotating geometries

The development of enabling CFD techniques for solving flow problems that involve rotating ma-

chinery was mainly driven by the needs from process industry and turbo-machinery industry to optimize

the performance of the rotating flow devices as well to reduce the cost related to full-scale experimental

testing (refs). The flow problem in such a device is challenging to solve, not only because the flow field

involved is characterized by three-dimensional highly unsteady complex phenomena, but also because

the relative motion between the rotating geometry and the stationary configuration make it difficult to

compute with a single fixed grid system. Early numerical techniques for simulating the flow in a stirred

tank used the so-called “black-box” methods, where the rotating impeller geometry is excluded from

the computational domain, and its effect on the flow is modeled by either prescribing experimentally

measured flow quantities on its boundary (Harvey and Greaves (1982); Placek and Tavlarides (1985);

Gosman et al. (1992); Brucato et al. (1990)), or alternatively, by empirically defined source terms dis-

tributed throughout its volume (Pericleous and Patel (1986)). Although these methods can yield reason-
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able results for certain flow configurations, they are subject to the serious drawbacks in the empiricism

associated with these procedures: first, the limited experimental data used to derive the empirical mod-

els cannot reproduce the real geometry effect; second, the experimental input that are based on specific

impeller-tank configurations can not be generalized to fit all the possible geometry variations.

To enable a time-accurate, truly predictive simulation of rotating geometry induced flow with an

exact geometry, Rai developed a patched-grid technique for Euler and Navier-Stokes equations in a

series of pioneered publications (Rai (1984, 1985, 1986, 1989a)). In this method, complex geometry

configurations is divided into simple sub-domains that can be meshed independently, the grids gener-

ated for the sub-domains are patched together, with a common patched boundary to separate each other.

Since the grid lines abutting the patched boundary may not align (e.g. due to the relative motion of

related grids), a fully conservative patched boundary scheme is applied to ensure accurate flow infor-

mation transfer across the patched boundary. For flow problems that involves relative motions between

solid geometries (such as helicopter rotor-fuselage combination or turbine rotor-stator configuration),

the patched grid method allows the use of separate patches for both the stationary geometry as well as

the moving geometries, with appropriate patched boundary scheme to treat the relative sliding motion

between patched grids and exchange flow information across the boundary. Both first-order accurate

explicit patched boundary scheme and second-order accurate implicit patched boundary scheme have

been developed for simulating three dimensional rotor-stator interactions inside a gas turbine system

and obtained good agreement with experimental data (Rai (1989b); Rai and Madavan (1990); Gundy-

Burlet (1992)). Whitfield et al. (1987) proposed a clicking-zone interface approach for a time accurate

three-dimensional Euler solution of flow about single-rotating and counter-rotating prop-fans. In this

approach, blocked-grids are used for both the flow sub-domains involving stationary geometry and ro-

tating geometries. Along the grid interface, the relative motion is handled by requiring grid lines to

be aligned after each timestep, which results in a a local dynamic regridding (grid distortion and re-

generation) to ensure a perfect match of the grids along the two sides of the interface. Blades and

Marcum (2007) developed a sliding mesh interface method based on a finite volume unstructured vis-

cous flow solver. In this method, the cell faces along the sliding mesh interface are extruded into the

adjacent sub-domain to create new cells that overlap the grid for the adjacent domain. The new cells

are used to update fluxes across the interface boundary, with flow solution on cell nodes being linearly
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interpolated from the solution of underlying grid. The method has obtained results that is comparable

to the ones from clicking-zone interface approach or patched boundary method. Steijl and Barakos

(2008) presented a sliding-mesh algorithm for calculating of the flow around helicopter rotorfuselage

configuration with non-matching grids on both side of the sliding mesh interface.

To enable time-dependent flow prediction in mixing tanks, Perng and Murthy (1993) developed a

moving-deforming mesh technique, similar to the clicking-zone interface approach applied by Whitfield

et al. (1987), a single grid and a single reference frame are used for the flow regions involve both sta-

tionary or moving boundaries, with the grid system is updated at every timestep: cells associated with

the flow region near the impeller rotates with the impeller, causing the cells adjacent to the sliding mesh

interface to deform. When cell deformation becomes severely bad a local grid refinement is applied to

improve the cell quality, and the flow information is conservatively projected into the new grid system.

The grid motion is accounted for by transforming the time derivatives in Eulerian conservation equa-

tions into a Lagrangian form. The method has been verified on two-dimensional and three-dimensional

mixing tanks simulations. The quality of resulting grid systems is very difficult to control and this may

impact the solution accuracy, this is a major drawback of above method.

Luo et al. (1993) proposed a sliding mesh method for the time-dependent solution of flow inside

impeller-stirred tank. This is to solve the time-dependent form of the governing transport equations in

two sub-domains which were fixed to the respective frames of reference, the outer one being stationary

and the inner one rotating with the impeller. At the interface, the numerical grids were allowed to slide

to accommodate the relative motion and a time-dependent interface matching was applied to bridge the

solutions in two sub-domains. Predictions were presented for a flow inside tank configuration that being

stirred by a six-blade Rushton impeller, and the agreement with the experiments was better than that

obtained by using a steady-state approach and a body-force impeller model. This was also confirmed

in the following on validations by Bode (1994). Murthy et al. (1994) described a similar sliding-mesh

technique for simulating the impeller-baffled tank interaction: two grid systems were employed, one

moving with the impeller and the other fixed to the tank. The two meshes interacted along a surface

of slip. The moving grid was allowed to slide relative to the stationary one, with no mesh distortion,

and a conservative interpolation was used to obtain flow variables and face fluxes across the slip sur-

face. Simulations were conducted in a time-dependent fashion and the laboratory reference frame was
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used for both grids; appropriate terms were included in the governing equations to account for grid

rotation. Qualitative results was reported without direct comparison to experimental data. Later studies

by Daskopoulos and Harris (1996) reported rather unsatisfactory results with a severe under-prediction

of the turbulence energy, which is mainly due to the use of RANS type turbulence model and a poor

spatial resolution adopted in the simulation.

In the process industry, the proposed sliding mesh techniques has enabled the use of actual rotating

geometry in the solution procedure, thus allow the explicit simulation of the whole flow field without

any recourse to empirical impeller modeling. Since then a number of numerical studies have been

performed to validate their numerical accuracy and study the affecting factors.

Tabor et al. (1996) presented both a time-dependent sliding mesh predictions and a steady state mrf

simulation of fluid flow in a mixing vessel stirred by 6-bladed Rushton turbine. The computed flow

field data are compared with experimental data available in the literature and obtained good agreement

for both methods. They also point out that the fundamental assumption used in steady-state MRF (e.g.

steady-state & axisymetric) makes sliding mesh more favorable in complex configurations. Bakker

et al. (1997) applied the sliding mesh method to the predictions of flow pattern created by a pitched

blade turbine at various Reynolds numbers, and the results compared favorably with experimental data

obtained from LDV measurement. It is concluded that the sliding mesh method is suitable for the

prediction of flow patterns in stirred tanks at low Reynolds numbers. Hartmann et al. (2004) assess the

effect of turbulence modeling on sliding mesh predictions by comparing the results to experimental data

from LDA measurements, and concluded that although RANS type models can obtain good predictions

of mean flow field, they are unable to predict accurately the turbulent kinetic energy distributions and

discharge flow behavior near the impeller region, while LES based approach gives reasonable good

predictions.

It should be noted here that all the above mentioned methods are based on solving the Navier-

Stokes equations in the solution domain, there are very limited studies in LBM for solving flow problem

involving rotating geometry in a confined baffled tank.

Eggels (1996) was the first to introduce LBM for studying flow problem inside a baffled stirred

tank. In his approach, a single grid system is used and a black-box method is employed for modeling

the effect of impeller. The impact of a rotating impeller on the flow field is modeled by means of a
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spatially/temporally varying force field. The applied force field is derived based on the difference be-

tween the local fluid velocity and the velocity of impeller, such that desired flow velocity near impeller

boundary can be enforced. A large eddy simulation (LES) approach was also used for modeling the

turbulence field inside the mixing tank, and the computed mean flow and turbulence intensities are in

close agreement with experimental data, demonstrated the LBM-LES approach as a potential method

for investigating turbulent flows in such industry applications. Derksen et al. (1999) extended Eggels’s

approach with a more refined forcing algorithm for the impeller modeling: the impeller was described

by a set of control points, a second order interpolation scheme was used to calculate the the mismatch

between the actual flow velocity and prescribed one at these control points. An adaptive force-field was

then literately applied to suppress the mismatch and enforce a desired velocity. The refined algorithm

shows good parallels performance for simulation of flow driven by a Rushton turbine, the simulation

results for phase-resolved velocity field, turbulent kinetic energy level and the flow vertex core devel-

opment near the impeller compared well with available experimental data. Derksen (2001) applied this

method to predict flow field driven by a pitched blade impeller in a baffled stirred tank, with a well

resolved grid system, he reported good comparison with experimental data in terms of phase averaged

velocity distributions and phase resolved velocity field. Lu et al. (2002) also implemented the LBM-

LES black box method on a non-uniform grid, and achieved significant CPU time cost reduction with

comparable numerical accuracy with previous predictions on an uniform grid. Revstedt et al. (2000)

presented LBM based LES simulation of a baffled reactor stirred by a single Rushton turbine , the

motion of the blades was described as time-dependent momentum sources.

One has to point out here that although with the LBM-LES approach a time-dependent solution can

be obtained, the black-box modeling of impeller as distributed forces can not truly represent the real

rotating geometry effect on the flow. Development of an LBM based sliding mesh technique is needed

in order to incorporate the real rotating geometry effects into the solution procedure, this requires an

accurate, stable numerical scheme that can effectively transfers flow information across the sliding

interface, while maintains the conservation of local mass and momentum. To develop such a LBM

sliding interface scheme is one of the research focus in this study.
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1.3 Objective of this study

The objective of this work is to develop boundary condition algorithm to improve the accuracy of

the volumetric LBM boundary schemes originally proposed by Chen et al. (1998), and to extend the

volumetric LBM boundary scheme to handle sliding mesh interface condition encountered in sliding

mesh simulation, as well as to demonstrate the performance of the proposed algorithms in various flow

test cases.

The primary contributions of this thesis are as follows:

1. A close investigation of the original volumetric LBM boundary scheme propose by Chen et al.

(1998) for its order of accuracy on arbitrary lattice/wall boundary configuration. The deficiency and

source of error for the original volumetric boundary scheme is explored.

2. Development of boundary condition scheme to to improve the solution accuracy of the volumetric

LBM boundary implementation. The proposed scheme applies a surface scattering correction procedure

to redistribute the surfel scattered particles based on local flow variation, it achieves a close-to-second

order accuracy on arbitrary lattice/wall boundary configuration, and reduces the solution dependence

on lattice/wall boundary alignment and inclination. Validation tests have been used to demonstrate its

capability for accurate flow prediction with complex geometries.

3. Extending the volumetric boundary scheme to impose sliding mesh interface conditions in a

sliding mesh simulation. The approach uses a modified specular reflection boundary condition to couple

flow solutions across sliding interface, it exactly conserves the mass and momentum flux across the

sliding mesh interface, and enables the use of Cartesian grid to perform sliding mesh simulation with

LBM. This is subsequently verified and validated using well known flow benchmarks.

1.4 Outline of the thesis

The format of this dissertation is outlined as follows. In the next chapter, an introduction of lattice

Boltzmann methods and it’s connection with kinetic theory is given. The types of boundary conditions

are discussed.

In chapter 3, a detailed description of the LBM volumetric bounce-back reflection scheme and spec-

ular reflection boundary scheme is given. This is followed by a close examination of assumptions used
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in the original volumetric scheme, the source of error has been identified that affects numerical accu-

racy. Carefully designed numerical experiments are presented to study the accuracy of the volumetric

scheme for flow with arbitrarily configured boundaries.

In chapter 4, a procedure of the particle scattering correction is proposed to improve the solution

accuracy with the volumetric boundary scheme. The particle scattering correction process redistribute

the surfel scattered particles in its affecting volume, the algorithm takes into account of the local flow

variation and does not alter the local conservation of mass. Numerical test are conducted to demonstrate

the improved order of accuracy with this scheme, the scheme is also shown to be less dependent on

lattice/boundary orientations. A set of classical benchmarks has been presented to prove the accuracy

of this scheme for flows involving curved boundary.

In chapter 5, a volumetric approach for enforcing sliding mesh interface condition is presented.

This approach extends the volumetric specular reflection boundary algorithm to couple flow solution

across sliding mesh interface, enables the use of LBM for sliding mesh simulation with exact rotating

geometry. Detailed procedure of implementating this LBM sliding mesh approach on a Cartesian grid

is presented This is demonstrated by simulating flows past a rotating propeller.

The conclusions of this research and directions for future work are presented in Chapter 6.
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CHAPTER 2. THE LATTICE BOLTZMANN METHOD

In this chapter we present the formulations of lattice Boltzmann method. The discretized equations

is shown to be directly derived from the continuum Boltzmann equation, and the resulting macroscopic

dynamics of the system obeys the Navier-Stokes equation when Knudsen number is small. The kinetic

theory based boundary conditions are straightforward to implement on complex geometries, and finally

the extension of LBM to model high Reynolds number turbulent flow is discussed, followed by a set of

comparisons with N-S based method to demonstrate LBM’s advantages and limitations.

2.1 Lattice Boltzmann equations

Historically, the LBE methods was originated from the lattice gas automata (LGA) (Wolfram (1986);

Frisch et al. (1986)), and was proposed as a floating point version of LGA aiming at eliminating the

statistical noise plaguing LGA simulations. With the introduce of linearized particle collision operator

and the use of single time relaxation approximations (Bhatnagar et al. (1954)) for the particle collision,

LBM has becomes a very efficient numerical algorithm for flow computations (Chen et al. (1991); Qian

et al. (1992)).

The general lattice Boltzmann equation (LBE) used in literature has the following form (Chen and

Doolen (1998)),

fi(x+ ci∆t, t+ ∆t)− fi(x, t) = Ωi(x, t), (2.1)

in which fi is the particle velocity distribution function indicating the probability of finding a particle at

location x at time t with discrete velocity ci. Here ci(i = 0, ...b) is a finite set of constant vectors that

spans the particle velocity space. ci∆t and ∆t are space and time increments respectively. On the right

hand side of equation 2.1, Ωi(x, t), is the collision term that represents the changes in the particle veloc-

ity distributions due to the particle-particle interactions. The collision term could have different forms
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which obey certain conservation laws (such as mass, momentum conservations and so on). The simplest

and also most popular one is the so called Bhatnagar-Gross-Krook (BGK) approximation (Bhatnagar

et al. (1954); Chen et al. (1991); Qian et al. (1992)), which describes the effect of collision as a process

to restore particle distribution to its local equilibrium:

Ωi(x, t) = −
fi(x, t)− feqi (x, t)

τ
. (2.2)

Here τ is a single relaxation time parameter that measures the average time for the distributions to relax

to its equilibrium via collisions, and feqi is the local equilibrium distribution function which depends on

local hydrodynamic properties.

The basic hydrodynamic quantities, such as fluid density ρ and velocity u, are obtained through

simple moment summations,  ρ(x, t) =
∑

i fi(x, t);

ρu(x, t) =
∑

i cifi(x, t)
(2.3)

The three-dimensional D3Q19 model (Chen et al. (1991); Qian et al. (1992)) shown in figure 2.1

is used in the present study. The particle density distribution functions are cell centered and particle

interacts with its neighborhood (either fluid particle or solid boundary) to generate fluid dynamics.

The local equilibrium distribution function has the following form such that the recovered macro-

scopic hydrodynamics satisfy the conservation laws:

feqi (x, t) = ρ(x, t)wi[1 +
ci · u(x, t)

T
+

(ci · u(x, t))2

2T 2
− u(x, t)2

2T

+
(ci · u(x, t))3

6T 3
− ci · u(x, t)

2T 2
u(x, t)2] (2.4)

where wi are the weighting parameters (Qian et al. (1992); Shan et al. (2006)),

wi =


1/18, in 6 coordinate directions;

1/36, in 12 bi-diagonal directions;

1/3, rest particles

(2.5)

and T is the lattice temperature which is set to 1/3 in isothermal simulation.

The conservation of mass and momentum is guaranteed via the following equalities, ρ(x, t) =
∑

i fi(x, t) =
∑

i f
eq
i (x, t);

ρu(x, t) =
∑

i cifi(x, t) =
∑

i cif
eq
i (x, t)

(2.6)
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Figure 2.1 The D3Q19 LBE model used in this study

With timestep ∆t being set to unity, equation 2.1 can be solved in a simple two-steps operation

(figure 2.2):

1. A collision step that calculates the post-collide distribution f
′
i (x, t) as

f
′
i (x, t) = fi(x, t)−

1
τ

[fi(x, t)− feqi (x, t)] (2.7)

2. An advection step which directly shifts particle distributions between two neighbors along the

discrete velocity direction:

fi(x+ ci, t+ 1) = f
′
i (x, t) (2.8)

Clearly, in the collision step, only local flow information such as ρ and ρu are needed to calculate

the equilibrium distribution feqi defined in equation 2.4; while for advection step only binary exchange

of data information between two neighboring lattice sites is needed. The local in space and time explicit

nature of this collision-advection operations, together with the extreme simplicity of the LB equation

2.1, make the algorithm very easy to implement, and can achieve excellent scalability on parallel com-

puters (Pohl et al. (2003), Velivelli and Bryden (2004), Clausen et al. (2010)).
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Figure 2.2 A two step implementation of LBE fluid dynamics: left, particle collision; right, particle
advection

In the collision step, equation 2.7 can be re-written as:

f
′
i (x, t) = feqi (x, t) + (1− 1

τ
)[fi(x, t)− feqi (x, t)]

= feqi (x, t) + (1− 1
τ

)fneqi (x, t) (2.9)

with the non-equilibrium distribution fneqi (x, t) defined as:

fneqi (x, t) = fi(x, t)− feqi (x, t) (2.10)

This indicates that the collision process only afters the particle non-equilibrium distributions.

Equation 2.1 can be rewritten in a volumetric form (Chen (1998)), assuming a piece-wise constant

particle distritution within cell volume V (x):

Ni(x+ ci, t+ 1)−Ni(x, t) = Ωi(x, t)V (x) = Qi(x, t), (2.11)

with Ni(x, t) = V (x)fi(x, t) is the number of particles within the cell volume with velocity ci.

In low-frequency and long-wave-length limit, one can recover the Navier-Stokes equations through

a Chapman-Enskog expansion (Chen et al. (1992)). The resulting equation of state is that of an ideal

gas fluid, namely the pressure p obeys a linear relation with density and temperature,

p = ρT. (2.12)
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The kinematic viscosity of the fluid is related to the relaxation parameter by (Frisch et al. (1986);

Chen et al. (1991); Qian et al. (1992))

ν = (τ − 1
2

)T. (2.13)

With above definition, the numerical error that was associated with the discretization of the advection

operator in LBE (equation 2.1) is absorbed into the viscosity, the resulting LBGK scheme has been

shown to be both second order accurate in time and space (Succi (2001)).

When τ is close to 0.5, fluid viscosity is small, in other words, particle distributions may become

negative (fi(x, t) < 0) in some cells and then numerical instabilities occur quickly and contaminate

the whole flow simulation. To suppress the negative distributions and improve numerical stability, a

protection procedure of positivity for distributions is applied in our simulations. If a new local relaxation

time parameter τ ′ in each cell is defined as the following (Li et al. (2004)):

τ ′(x, t) = max[τ, 1−
feqi (x, t)
fi(x, t)

] for {i = 0, ...18} (2.14)

a positive distribution is guaranteed after each collision as long as it is positive before the collision. In

other words, by effectively adding a local viscosity lower bound, which is dynamically local distribution

dependent, we are able to keep distributions positive and improve the simulation stability.

2.2 Derivation of LBE from the continuum Boltzmann equation

The lattice Boltzmann equation 2.1 can be directly derived from the continuum Boltzmann kinetic

equation through a Hermite-expansion based phase space discretization (Shan et al. (2006)). Let’s start

with the continuum Boltzmann equation that describes the evolution of the single-particle distribution

function f(x, c, t) in D-dimensional space based on the BGK collision model:

∂f(x, c, t)
∂t

+ c · ∇f(x, c, t) = − 1
τ0

[f(x, c, t)− feq(x, c, t)] . (2.15)

Here, τ0 is the characteristic relaxation time of collisions to equilibrium and is related to fluid kinetic

viscosity ν as τ0 = ν/T . feq represents a local equilibrium distribution (i.e. Maxwell-Boltzmann) in

the reference frame moving with the bulk flow:

feq(x, c, t) =
ρ(x, t)

(2πθ)D/2
exp

[
−(c− u(x, t))2

2θ

]
. (2.16)



www.manaraa.com

22

The particle distribution function f(x, c, t) can be projected onto Hermite basis with the dimen-

sionless Hermite ortho-normal polynomialsH(n)(c) defined in velocity space c:

f(x, c, t) = ω(c)
∞∑
n=0

1
n!
a(n)(x, t)H(n)(c). (2.17)

where the dimensionless expansion coefficients, a(n)(x, t), is an integration over the entire dimension-

less velocity space of c given by:

a(n)(x, t) =
∫
f(x, c, t)H(n)(c)dc, (2.18)

With Hermite polynomials as the expansion basis, all the expansion coefficients are linear combi-

nations of the velocity moments of f , and the first few expansion coefficients can be directly connected

to the five fundamental thermo-hydrodynamic variables, ρ, u and θ (= 2ε/D), and the momentum flux

tensor P (or its traceless part, the stress tensor σ):

a(0) =
∫
fdc = ρ (2.19a)

a(1) =
∫
fcdc = ρu (2.19b)

a(2) =
∫
f(c2 − δ)dc = P + ρ(u2 − δ) = Q+ ua(2) − (D − 1)ρu3 (2.19c)

Since the leading moments of a distribution function up to N -th order are preserved by truncations

of the higher order terms in its Hermite expansion, a distribution function f(x, c, t) can be approximated

by its truncated Hermite expansion fN (x, c, t), a projection onto a Hilbert subspace spanned by the first

N Hermite polynomials without altering the first N moments, i.e.:

f(x, c, t) ≈ fN (x, c, t) = ω(c)
N∑
n=0

1
n!
a(n)(x, t)H(n)(c). (2.20)

This also guaranties that a fluid dynamic system can be constructed by a finite set of macroscopic

variables (thermo-hydrodynamic moments).

The discretization of Hermite truncated distribution function fN (x, c, t) involves the use of the

Gauss-Hermite quadrature to evaluate the expansion coefficients, a(n)(x, t), which can be expressed as

a weighted sum of the functions calculated at discrete velocities ci:

a(n) =
d∑
i=1

wi
ω(ci)

fN (x, ci, t)H(n)(ci). (2.21)
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wherewi and ω(ci), i = 1, · · · , d, are respectively the weights and abscissa of a Gauss-Hermite quadra-

ture of a degree ≥ 2N .

By substituting equation 2.21 and 2.20 into equation 2.15 and after some straightforward algebra,

the governing equations for discretized velocity distributions can then be directly evaluating at ci:

∂fa
∂t

+ ci · ∇fi = −1
τ

[fi − feqi ] a = 1, · · · , d. (2.22)

where on the right-hand-side,

feqi = wiρ[1 + ci · u+
1
2

[(ci · u)2 − u2 + (θ − 1)(c2
i −D)]

+
1
6
ci · u6[(ci · u)2 − 3u2 + 3(θ − 1)(c2

i −D − 2)] + · · · ] (2.23)

Equation 2.22 is a differiential equation for the discrete velocity distributions. It can then be dis-

cretized in space and time by first integrating the equation along the velocity characteristicsin time:

fi(x+ ci, t+ 1)− fi(x, t) = −1
τ

∫ t+1

t
dt′
[
fi(x+ ci(t′ − t), t′)− feqi (x+ ci(t′ − t), t′)

]
(2.24)

The right-hand side of above equation can be approximated by a simple trapezoidal rule intergration,

which leads to:

fi(x+ ci, t+ 1)− fi(x, t) ≈ − 1
2τ

[fi(x, t)− feqi (x, t)]

− 1
2τ

[fi(x+ ci, t+ 1)− feqi (x+ ci, t+ 1)] (2.25)

Introducing a shifted distribution function such that (He et al. (1998)):

f̄i(x, t) = fi(x, t) +
1
2τ

[fi(x, t)− feqi (x, t)] (2.26)

Substituting above equation into equation 2.25, we arrive at the following approximation form for

the intergrated BGK-Boltzmann equation:

f̄i(x+ ci, t+ 1)− f̄i(x, t) = − 1
τ0 + 0.5

(f̄i(x, t)− feqi (x, t)) (2.27)

With τ = τ0 + 0.5 = ν
T + 0.5, and using the “shifted” distribution in the discrete equation, the

standard form of the Lattice Boltzmann Equation 2.1 can be obtained.

In the above derivation, since both x and x + ci are lattice centroid locations, this directly implies

a unity CFL (Courant-Friedrichs-Lewy) number : |ci∆t|/∆x = 1.
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2.3 Recovering macroscopic equations

To derive the macroscopic equations at small Knudsen numberK (where the Navier-Stokes descrip-

tion is valid), we make use of the multi-scaling Chapman-Enskog expansion (Chapman and Cowling

(1970)) of discrete particle distribution fi and time derivative ∂t, in powers of K: fi = f
(0)
i +Kf (1)

i +K2f
(2)
i + · · · ;

∂t = K∂(0)
t +K2∂

(1)
t + · · ·

(2.28)

where f (0)
i = feqi corresponds to equilibrium distribution in equation 2.4

Substituting the expansion 2.28 into the discrete velocity Boltzmann equation 2.22, and matching

the terms in the same order of K, the Boltzmann-BGK equation can be turned into an infinite hierarchy

of equations according to the power of K,

n−1∑
k=0

∂tkf
(n−k−1)
i + ci · ∇f (n−1)

i = −1
τ
f

(n)
i , for n = 1, 2, · · · (2.29)

for the first and the second order of particle distributions, we have:

(∂(0)
t + ci · ∇)f (0)

i = −1
τ
f

(1)
i (2.30a)

(∂(0)
t + ci · ∇)f (1)

i + ∂
(1)
t f

(0)
i = −1

τ
f

(2)
i (2.30b)

Taking the first two moments of above equations and combining the results together we arrive at the

following conservation equations for mass and momentum:

∂tρ+∇ · (ρu) = 0 (2.31)

∂t(ρu) +∇ · (P ) = 0 (2.32)

where P = P (0) + P (1) is the momentum flux tensor, with its equilibrium part P (0) and non-

equilibrium part P (0) defined as:

P
(k)
ij =

∑
i

cicjf
(k)
i , k = 0, 1 (2.33)

For the D3Q19 model with given equilibrium distribution 2.4, the above equations yield:

P
(0)
ij = pδij + ρuiuj (2.34)

P
(1)
ij = −ν(∇i(ρuj) +∇j(ρui)) (2.35)
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Here p is the pressure that obeys the equation of state for idea gas p = ρ/3, and ν = (τ − 0.5)/3

(He et al. (1998)) is the kinematic fluid viscosity. The resulting momentum equation is the same as the

Navier-Stokes equations with an error of O(Ma3) (Shan et al. (2006)).

2.4 LBM wall boundary condition

In LBM the wall boundary conditions are realized via particle reflections from solid surfaces. Two

types of kinetic theory based LBE boundary conditions: the “bounce-back reflection” boundary condi-

tion and the “specular reflection” boundary condition are discussed in this section.

The bounce-back reflection boundary condition is generally used to achieve a “friction wall” effect:

with bounce-back reflection, the velocity of a particle is completely reverted after the wall-particle

interaction(figure2.3). This process is realized in terms of particle distribution as:

fi∗ = fi, with ci∗ = −ci (2.36)

Figure 2.3 LBM bounce-back reflection boundary condition

The specular reflection boundary condition is usually applied to achieve free-slip boundary condi-

tions, it implies that particles reflect off of the solid wall with the angles of incidence and reflection

being equal (figure 2.4). The magnitude of the velocity after the collision is the same as the velocity

before the collision. Even though the component of the velocity vector normal to the surface changes

sign, the tangential component is preserved so that a frictionless wall property is achieved. The reflected

velocity, cir , can be related to the incident particle velocity, ci, by:

ci = cr − 2n̂(cr · n̂), for cir · n̂ ≥ 0 (2.37)
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where n̂ is the surface normal vector.

During the specular reflection process, the reflected distribution is equal to the incident distribution:

fir = fi, (2.38)

Figure 2.4 LBM specular reflection boundary condition

The effect of the boundary condition processes above on the local mass and momentum changes near

wall fluids can be interpreted via a “volumetric” approach (Chen et al. (1998)). For wall surface with

area A and surface normal n̂, within a time interval ∆t and along the incoming ci velocity direction,

only the particles from the spatial volume Vi that can reach the wall boundary. This volume is defined

as

Vi = |n̂ · ci|A∆t, for ci · n̂ ≤ 0 (2.39)

and the total in-coming particles within this volume are:

Γini = fiVi = fi|n̂ · ci|A∆t, for ci · n̂ ≤ 0 (2.40)

For bounce-back reflection, the out-going particles are having the same volume as the in-coming

ones:

Γouti∗ = fi∗Vi∗ = fi∗ |n̂ · ci∗ |A∆t, for ci∗ · n̂ > 0 (2.41)

with equation 2.36, it’s straightforward to show that the bounce-back scheme introduce zero mass into

the local fluid: ∑
i∗

Γouti∗ −
∑
i

Γini = 0 (2.42)
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Thus the volumetric bounce-back reflection conserves the local mass exactly. It can be shown that this

is also true for the specular reflection boundary condition as well.

Since the bounce-back reflection reverts both the normal and tangential velocity components of

incoming particles, the corresponding particle momentum change is directly related to the wall nor-

mal/tangential forces that exerted on the fluid:

F =
1

A∆t
[
∑
i∗

ci∗Γouti∗ −
∑
i

ciΓini ] (2.43)

In the hydrodynamic limit, one arrives at the familiar surface pressure p and wall friction force τw =

µ∂ut
∂n̂ (Chen et al. (1998)):

F = pn̂+ τw t̂ (2.44)

The above LB boundary conditions is conceptually straightforward to implement in LBM, and its

simplicity in handling arbitrary complex geometries significantly promotes the wide use of LBM in

engineering applications (Chen et al. (2003)).

2.5 Turbulence modeling

In order to account for the contributions from unresolved turbulent fluctuations, the LBE is ex-

tended by replacing its molecular relaxation time scale with an effective turbulent relaxation time scale

(Chen et al. (2003, 2004)), i.e., τ → τeff, where, τeff, can be derived from a turbulence model, e.g. via

systematic renormalization group (RNG) procedure as (Yakhot and Orszag (1986)):

τeff = τ +
νeddy
T

(2.45)

A modified two-equation, k-ε, model based on the original RNG formulation describes the sub-grid

turbulence contributions νeddy (Yakhot and Orszag (1986); Yakhot and Smith (1992)), and is given by

ρ
Dk

Dt
=

∂

∂xj

[(
ρνo
σko

+
ρνT
σkT

)
∂k

∂xj

]
+ τijSij − ρε (2.46)

ρ
Dε

Dt
=

∂

∂xj

[(
ρνo
σεo

+
ρνT
σεT

)
∂ε

∂xj

]
+ Cε1

ε

k
τijSij −

[
Cε2 + Cµ

ηs
3(1− ηs/ηo)
1 + βηs3

]
ρ
ε2

k
(2.47)

where the parameter, νeddy = Cµk
2/ε, is the eddy-viscosity in the RNG formulation.
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The above equations can be solved on the same lattice, for example, using a modified Lax-Wendroff-

like explicit time marching finite difference scheme (Teixeira (1998); Pervaiz and Teixeira (1999))

This methodology is also commonly referred to as LBM based Very Large Eddy Simulation (LBM-

VLES). The LBE-VLES based description of turbulent fluctuations carries flow history and upstream

information, and contains high order terms to account for the non-linearity of the Reynolds stress (Chen

et al. (2004); Shan et al. (2006)). This is superior when compared with its Navier-Stokes counterpart,

which uses the conventional linear eddy viscosity based Reynolds stress closure models and produces

excessive dissipation when doing unsteady simulations (Chen et al. (2003, 2004)).

2.6 Advantages and drawbacks: comparison LBM with Navior-Stokes equations

based numerical method

The kinetic nature of LBM introduces very unique features that distinguish it from the Navior-

Stokes equation based numerical methods (Chen and Doolen (1998); Aidun and Clausen (2010)).

1. the N-S based methods solve the second order macroscopic PDEs, while a discrete velocity LBM

model is a set of first-order PDEs.

2. The N-S solver has to deal with the nonlinear convection terms, while in LBM the convection

terms are linear and with constant velocity values, it is handled by a simple straightforward ad-

vection scheme.

3. As an explicit method, the Courant-Friedrichs-Lewy (CFL) number in LBM is always set to 1,

while for N-S based time marching schemes, CFL number genearally is set to much less than 1

for numerical stability. This results in a very low numerical dissipation with LBM.

4. Solving the pressure field in the incompressible N-S equation requires solving an elliptic Poisson

equation which is numerically difficult to calculate and requires non-local flow information, while

LBM approximate the incompressible N-S equations in the nearly incompressible limit and the

pressure is obtained by an equation of state based on only local flow information.

5. Due to the kinetic nature of the Boltzmann equation, the physics associated with the molecular

level interaction can be incorporated more easily in the LBE model
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6. In LBM the boundary condition is straightforward to implement, which can allow exact boundary

treatment on complex geometry with Cartesion grid.

7. The simplicity of the LBM algorithm and the pure local operations enable LBM to be an ideal

numerical algorithm for large scale parallel computing (Pohl et al. (2003); Velivelli and Bryden

(2004); Clausen et al. (2010)).

On the other hand, LBM also has its own limitations, which includes:

1. The Cartesian grid used in LBM is cubic-cell based, which generally results in a large grid system

( and computational demanding) when high resolution grid is needed.

2. LBM is intrinsically compressible, this may introduce non-negligible density variations for in-

compressible flow and compromise the solution accuracy.

3. Theoretical framework for extending LBM to solving more complex fluid, for instance in high

speed flows, large temperature/density variation flow, and high density ratio multiphase flows, it

is not well established.



www.manaraa.com

30

CHAPTER 3. A VOLUMETRIC LBM BOUNDARY SCHEME

The LBM boundary scheme proposed by Chen et al. (1998) realizes the bounce-back condition and

specular-reflection condition in a “volumetric” form and preserves the local mass exactly, this avoids the

problems introduced by the point-wise interpolation based schemes. In this chapter, the basic elements

to implement this volumetric scheme on arbitrary geometries are described, numerical algorithms for

realizing bounce-back reflection and specular reflection conditions are presented, this is followed by

discussion on major shortcoming associated with the original volumetric scheme. Numerical examples

are presented to illustrate these problems.

3.1 Volumetric LBM boundary scheme

In this section, we’ll follow Chen et al. (1998) to discuss the detailed volumetric algorithms for

implementing two basic LBM boundary conditions: the bounce-back reflection boundary condition and

the specular reflection boundary condition.

3.1.1 Cartesian Grid for LBM Simulation

In LBM, a Cartesian grid system with regular cubic lattice cells is generally used to discretize the

spatial fluid domain, for solid boundary, it is represented by a surface grid and is directly overlaid on

top of the underlying Cartesian mesh to generate exact fluid/solid interface. The surface grids used are

triangulations of the original CAD surface, the resulting planar surface elements are written in common

STL or NASTRAN format for direct user import during simulation setup. Figure 3.1 shows an example

of such surface grid and the underlying Cartesian fluid cells.

With specified user input, generation of volumetric grid for the fluid domain and creation of fluid/solid

database for boundary conditions is completely automated during the discretization process. Such a
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Figure 3.1 Surface grid used for a automobile model and the applied underlying Cartesian grid (from
PowerFLOW Training Notes (2008))

Cartesian grid approach minimizes the needs for the mesh translation in the engineering CAD/CFD

analysis, and is very effective in reducing the overall cost related to generation of body-conforming

grids with very complex geometries (Aftosmis (1997)).

3.1.2 Surfel and pgram

The basic elements to enforce the volumetric LB boundary condition are purely particle dynamics

based. For a solid surface that intersects the underlying fluid lattice cells, its surface elements (from

now on the name of “surfel” is used for simplicity) interacts with its neighboring fluid cells to generate

the particle-surface dynamics. Along given particle velocity, the particles that can advect to the surfel

location within a unit timestep can only come from a bounded spatial domain that uniquely defined by

its velocity and the surfel geometry. In numerical simulations with a discrete particle velocity model,

such a domain can be mathematically defined as a set of extruded parallelogram (parallelepiped in

three dimensions, named as “Pgram” in the following contents) that originated from the related surfel.

The Pgram extends along the reverse direction of incoming particle velocity, and forms a closed volume

containing all the incoming particles with specified advection velocity. Figure 3.2 gives such a geometry

definition on a general curved surface boundary: for surfel α with unit normal n̂ and surface area of

Aα, the Pgram for particle velocity ci is defined by a volume V α
i,pgram = |ci · n̂|Aα∆t. Since the surfel

orientation and location can be arbitrary with respect to the discrete particle velocity, only a subset of the

discrete velocities can advect particles to the surfel, with corresponding velocity ci satisfies condition
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ci · n̂ < 0. For particles with velocity such that ci · n̂ ≥ 0, they advect away from the surfel.

Figure 3.2 Definition of surfel and Pgram for a curved boundary

Let’s illustrate this in a simple two-dimensional lattice configuration with the D2Q9 LBE model as

shown in figure 3.3. Particle in the near wall lattice cell can advect along all its 9 velocity directions

ci(i = 0, 1, ..., 8) within a unit timestep. Among these discrete velocities, only the ones c2, c3, c6 that

allow particle to directly impact surfel α, while for other velocities (c1, c4, c5, c7 and c8), particles

directly advect to the neighboring fluid cells without interacting with surfel α. Three Pgrams can be

created for velocities c2, c3, c6, by simply gliding surfel α along their inverse directions with the same

velocity magnitude (figure 3.4): Here the blue Pgram region represents the one formed for particle

velocity c3, the red one represents Pgram for particle velocity c6, and the green one is for particle

velocity c2.

With above volumetric boundary representation, surfels and Pgrams form the basic elements to

realize particle/surface dynamics: Pgrams define confined spatial volumes that surfels can collect in-

coming particles with given velocity (the surfel gathering process), these surfel gathered particles can
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Figure 3.3 Particle advections along discrete velocities in a near-wall cell

redistributed back into the Pgram volumes according to the given boundary condition (the surfel scatter-

ing process). Both bounce-back reflection and specular reflection boundary conditions can be realized in

such a surfel gathering/scattering process. Beside the processes of surfel gathering and scattering, inter-

mediate surfel-particle interactions can also be constructed to enforce desired hydrodynamic boundary

conditions (Chen et al. (1998)).

3.1.3 Pgram overlapped cells and near wall fluid dynamics

In the spatial domain, each Pgram related to surfel α and discrete particle velocity ci overlaps m

number of underlying fluid cells, these cells forms a region that they not only can receive particles

advected from their neighborhood fluid cells, but also can receive surfel α scattered particles through

this Pgram volume (figure 3.5). These cells are called Pgram-overlapped cells. Apparently, all the near

wall fluid cells that are adjacent to surfels are Pgram-overlapped cells, the cells that are next to these

near wall fluid cells (second layer near wall cells) may also be overlapped by a Pgram, depending on
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Figure 3.4 Three Pgrams are formed for surfel α with incoming particle velocities: c2, cc, c6

the actual surfel location and orientation.

The following geometry notations are used throughout the thesis content: For surfel α with incom-

ing particle velocity ci, the Pgram has a geometrical volume V α
i,pgram, and this volume is splitted into

m parts by the Pgram-overlapped cells x1, x2, ...xm (figure 3.6), each part has a fraction volume of

V α
i,pgram(x),x = (x1,x2, · · ·xm) such that:

V α
i,pgram =

xm∑
x=x1

V α
i,pgram(x) (3.1)

The cell volume for a Pgram-overlapped cell is denoted by Vcell(x), the cell volume is less than

unity if a partial cell is formed by solid geometry intersection. For Pgram-overlapped cells, part of the

total number of post-collide particles N
′
i (x, t) is directly advected to its neighborhood fluid cells, the

remaining part is being collected by the related surfels through their Pgrams. The portion of these surfel

collected particles is defined by

P si (x) =
∑
α

V α
i,pgram(x)
Vcell(x)

=
∑
α

Pαi,pgram(x) ≤ 1 (3.2)
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Figure 3.5 Illustration of near wall dynamics that involves Pgram (defined by surfel α and particle
velocity c6 in the above example ) overlapped cells: the fluid cells in green color receive
particles along −c6 direction from both the yellow fluid cell as well as surfel α scattered
particles within this Pgram region

With the above definitions, particle advections in these Pgram-overlapped cell can be expressed as:

Ni(x+ ci, t+ 1) = [1− P si (x)]N
′
i (x, t) +Qi(x+ ci, t) (3.3)

In equation 3.3, the first term on the RHS represents the advected post-collide particles from its

neighboring cell, and second termQi(x+ci, t) represents surfels scatted particles via all the overlapped

Pgrams.

The calculation of surfels scattered particle numbers in equation 3.3 is straightforward: for fluid

cell x, there are N number of Pgrams overlapping it along the particle velocity ci direction, which

corresponds to N number of associated surfels. In each Pgram, among all the scattered particles

Γout,αi (t), (α = α1, α2, · · · , αN ), the fraction (denoted by Γout,αi (x, t), (α = α1, α2, · · · , αN )) that

is redistributed into the corresponding overlapped Pgram volume V α
i,pgram(x) can be expressed as a
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Figure 3.6 A Pgram defined by surfel α and particle velocity c6, it’s splitted by the underlying fluid
cells into four parts (each part is represented by different color)

function proportional to it’s geometry weight

Γout,αi (x, t) =
V α
i,pgram(x)
V α
i,pgram

Γout,αi (t) (3.4)

The overall surfel-scattered particles that being advected to this cell volume along ci direction is simply

a summation of all the contributions from related Pgrams (surfels):

Qi(x, t) =
∑
α

Γout,αi (x, t)

=
∑
α

V α
i,pgram(x)
V α
i,pgram

Γout,αi (t) (3.5)

The calculation of total outgoing particles Γout,αi (t) for a particular surfel α and particle velocity ci is

directly related to the detailed surface boundary condition, this will be addressed in the next section.

In the above(equation 3.1 → 3.5), the extrusion of Pgram, the formation of partial cells, and the

calculation of related Pgram volumes can be handled by standard geometry intersecting/clipping algo-

rithms in computational geometry, In this study, these information is directly provided by the software
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Figure 3.7 Surfel gathers incoming particles in the c6 direction (left) and scatters back outgoing parti-
cles in the −c6 direction through its Pgram

package of PowerFLOW, discussion of detailed implementation of these algorithms is beyond the scope

of this thesis.

3.1.4 Volumetric bounce-back reflection algorithm

To realize volumetric bounce-back reflection boundary condition on surfel α, a two-step surfel

gathering-scattering procedure is applied (figure 3.7):

1. Surfel gathering: Surfel α collects all the incoming particles Γin,αi (t) along its ci direction from

the corresponding Pgram overlapped cells:

Γin,αi (t) =
∑
x

Pαi (x)Ni(x, t) (3.6)

Here Pαi (x)Ni(x, t) represents the number of particles that comes from cell x, since only Pαi (x)

fraction of its cell volume is overlapped with this Pgram and advect particles to the surfel α.

2. Surfel scattering: Surfel α scatters back all the incoming particles (with velocity ci) into the same

Pgram volume, the outgoing particles revert their velocity direction to −ci

Γout,αi∗ (t) = Γin,αi (t), with ci∗ = −ci (3.7)
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Figure 3.8 Surfel collision process and the constructed incoming/outgoing states

The scattered particles can then be redistributed within the Pgram overlapped cells according to

equation 3.4.

3.1.5 Volumetric specular reflection algorithm

Due to the arbitrary location and orientation of actual surface, specular reflected particles from

general surface could have velocity in any direction, it is thus very challenging to implement the specular

reflection algorithm on an arbitrary curved surface with only a finite set of discrete particle velocities,

since directly projecting these scattered particles onto the directions of discrete particle velocities is a

non-trivial process.

Chen et al. (1998) introduced a novel idea to solve this problem: After surfel gathering process,

an intermediate particle-surfel collision procedure was established, this was then followed by a surfel

scatering process to scatter back the post-collided particles along the reversed velocity direction. To

ensure zero change on the tangential momentum, the actual viscosity effect is set to 0 during the particle-

surfel collision process, and surfel equilibrium distributions are constructed with local averaged density

and tangential velocity. This allows to realize a volumetric specular-reflection condition with only a

finite set of discrete particle velocities.



www.manaraa.com

39

The procedure is detailed in the following steps:

1. Surfel gathering: surfel gathers the total incoming particles Γin,αi (t), this step is the same as the

one used in bounce-back reflection condition (equation 3.6).

2. Constructing surfel incoming states fαi∗ and the corresponding equilibriums feq,αi∗ . The surfel

incoming states are constructed based on all the possible incoming particle velocities. For the

simple case considered in figure 3.8, velocity c2, c3 and c6 form the incoming states for surfel

α. The surfel incoming state distributions are calculated based on Pgram averaged distributions

from its overlapped cells as:

fαi∗(t) = f̄αi∗(t) ≡
Γin,αi (t)
V α
i∗,pgram

(3.8)

For these surfel states, the corresponding surfel equilibrium can be calcuated from the Pgram-

averaged surfel density ρα and tangential velocity uαt as:

feq,αi∗ (t) = ραwi[1 +
ci∗ · uαt
T

+
(ci∗ · uαt )2

2T 2

− (uαt )2

2T
+

(ci∗ · uαt )3

6T 3
− (ci∗ · uαt )

2T 2
(uαt )2] (3.9)

3. Surfel collision process. The in-coming particles collide with surfel, the post-collide particles

revert their velocity direction and become out-going particles, their corresponding post-collide

outgoing particle distribution obeys the BGK collision rule:

fαi
′
(t) = feq,αi (t) + (1− 1

τ
)[fαi∗(t)− f

eq,α
i∗ (t)], with ci∗ = −ci (3.10)

In equation 3.10, the relaxation time is set to τ = 0.5, which corresponds to a viscosity of ν = 0.

From the definition of feq,αi∗ (t) specified in equations 3.9, this zero viscosity value equivalently

cancels the near wall shearing effect on the tangential momentum flux (Chen et al. (1998)), a

frictionless boundary condition can thus be realized. The equilibrium distribution feq,αi (t) can be

obtained in the same manner as the one defined in equation 3.9.

4. Surfel scattering: Surfel α scatters the outgoing particles back into the related Pgram volume.

Since the outgoing particle velocity is just a simple revert of the incoming particle velocity, same

Pgram can be used for both surfel gathering and scattering.
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The total amount of outgoing particles can be obtained via:

Γout,αi (t) = Γ̄out,αi (t) + ∆1Γout,αi (t) (3.11)

Here the first term on RHS represents the averaged number of out-going particles within the

Pgram, with its value defined from the post-collide distributions:

Γ̄out,αi (t) = V α
i,pgramf

α
i

′
(t)

= V α
i,pgram[feq,αi (t) + feq,αi∗ (t)]− Γin,αi (t) (3.12)

The second term on the RHS of equation 3.11 corresponds to a mass correction procedure, since

the process in equation 3.11 introduces a non-vanishing mass flux. This correction is defined as:

∆1Γout,αi (t) =
V α
i,pgram∑

i,ci·n̂≤0,|ci|=cj
V α
i[ ∑

i,ci·n̂≤0,|ci|=cj

Γin,αi (t)−
∑

i,ci·n̂≥0,|ci|=cj

Γ̄out,αi (t)
]

(3.13)

The above algorithm can also be modified to include a finite friction force on the surfel with desired

value. This was done by adding an extra term ∆2Γout,αi (t) into the RHS of equation 3.11:

∆2Γout,αi (t) = −KfV
α
i ci · n̂

[
feq,αi (t)− feq,αi∗ (t)

]
(3.14)

Kf is the so-called skin friction factor and is connected to the tangential force F α
f via:

F α
f = −Kfp

αuα (3.15)

The generalized slip algorithm is the basis for incorporating turbulence wall shear stress model into

LBM, particularly when simulating high Reynolds number turbulent flows with under-resolved near

wall grid.

3.2 Connection to macroscopic boundary conditions

As already seen in section 2.4, volumetric bounce-back reflection can realize the desired wall fric-

tion in the hydrodynamic limit of the flow, here we only present the prove on connecting the above

volumetric specular reflection algorithm to free-slip (zero tangential force) wall boundary condition.
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Combining equation 2.43 and equation 3.11 together, we have:

F α(t) =
1

A∆t
[
∑
i∗

ci∗(Γ̄
out,α
i (t) + ∆1Γout,αi (t))−

∑
i

ciΓ
in,α
i (t)], with ci∗ = −ci (3.16)

Since the correction term ∆1Γout,αi (t) is a isotropic process, we can directly verify:

∑
i∗

ci∆1Γout,αi (t) = 0 (3.17)

Substituting equation 3.12 into the remaining term of equation 3.16, and canceling out the in-coming

particle flux, we have:

F α(t) =
1

A∆t
=

1
A∆t

∑
i,ci·n̂≥0

ciV
α
i,pgram[feq,αi (t) + feq,αi∗ (t)] (3.18)

With the Pgram volume defined as V α
i,pgram = |ci·n̂α|Aα∆t, and applying the symmetry properties,

we arrive at:

F α(t) = n̂α ·
∑
i

cicif
eq,α
i (t)

= pαn̂α (3.19)

Since the resulting force only has component normal to the surface, this indicates that the tangential

force is effectively zero and a free-slip boundary condition is thus achieved.

The local conservation of mass is also satisfied in the above defined specular reflection process

since the mass correction in equation 3.13 exactly cancels the difference between incoming particles

and out-going particles.

3.3 Drawback with the original volumetric scheme

The original volumetric boundary scheme can realize both the bounce-back reflection and spec-

ular reflection conditions on arbitrary geometry, it guarantees exact conservation of local mass for

both boundary conditions, and can also conserve the local tangential momentum for specular reflection

boundary condition. With a generalized slip algorithm, it can precisely control various hydrodynamic

fluxes across the surel. The detailed balance condition is satisfied, and correspondingly the numerical

surface noise associated with the boundary discretization is greatly reduced. The algorithm has been

applied to many benchmark studies and the results are promising (Chen et al. (2003)).



www.manaraa.com

42

However, this scheme has noticeable numerical diffusion near the solid surface, particularly when

the solid boundary is arbitrarily oriented or offsets with respect to the underlying lattice cells (Li et al.

(2004); Rohde (2004)). Rohde (2004) also reported that this scheme can achieve only first order of

accuracy for flow problem with curved boundary.

The problem is directly linked to the surfel scattering process defined with equation 3.4 and equa-

tion 3.5. With such a definition, the scattered particles are evenly redistributed within its Pgram volume,

this is equivalent to assume a constant particle distribution fout,αi,pgram(x, t) in the whole Pgram volume:

fout,αi,pgram(x, t) = f̄out,αi,pgram(t) ≡
Γout,αi (t)
V α
i,pgram

(3.20)

However, the distribution function fi(x, t) can be decomposed into its equilibrium part feqi (x, t)

and non-equilibrium part fneqi (x, t) such that

fi(x, t) = feqi (x, t) + fneqi (x, t) (3.21)

Considering only the equilibrium part, it can be further expanded up to second order as:

feqi (x, t) = ρ(x, t)wi[1 +
ci · u(x, t)

T
+

(ci · u(x, t))2

2T 2
− u(x, t)2

2T
] (3.22)

Apparently the piece-wise constant distribution assumption is only valid when the formed Pgram is

within one fluid cell (where ρ(x, t) and u(x, t) just take the local cell averaged value), or particles dis-

tribute homogeneously within the Pgram volume. For problems with arbitrary located/oriented surface,

the formed Pgram may overlaps several fluid cells, the second condition is only valid when the flow

does not move, since the near wall flow region is highly viscous dominated, the wall shearing effect re-

lated to fluid motion results in a strong spatial variation of fluid quantities, the particle distribution thus

differs cell by cell. Under such condition, enforcing an evenly redistribution of the out-going particles

effectively mixes the solutions in the Pgram overlapped cells, this introduces high level of numerical

diffusions into the system, and could seriously compromises the solution accuracy when wall shearing

effect is not negligible. In the following numerical test, the effect of using equation 3.20 on solution

accurary with general lattice-wall boundary configuration is illustated.
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3.4 Convergence study with arbitrary oriented/offseted boundary

To study the accuracy of the original volumetric boundary scheme , the following numerical tests

are constructed:

Considering a simple two dimensional channel flow situation where a constant gravity field g is

applied to drive the flow. The channel height is H . When gravity is small the fully developed flow field

is laminar and a well established parabolic profile of the stream wise velocity U(y) can be obtained:

U(y) = − g

2ν
y2 +

g

2ν
Hy (3.23)

Here y is the distance measured from the wall boundary and along the direction normal to the channel

wall.

This problem can be easily solved on a grid system that has the near wall lattice cell boundaries

exactly aligned with wall boundary. To make it more general, the grid system can be shifted in the

wall normal direction so that the near wall cell has only a fraction of its volume being occupied by

the fluid (lattice-offset configurations, see figure 3.9), or the grid system can rotate arbitrarily so that

the wall boundaries have a inclined angle with respect to the fluid cell boundaries (the lattice-inclined

configurations, see figure 3.10). Lattice offset and inclined arrangements are commonly encountered

when an arbitrary geometry intersect with a Cartesian grid system.

Figure 3.9 Lattice offset configurations. From left to right, configurations of: lattice aligned, lattice
offset with pfluid 2/3, lattice offset with pfluid 1/2, lattice offset with pfluid 1/3. Here
pfluid measures the fraction of fluid in a boundary cell
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Figure 3.10 Lattice inclined configurations. Walls are inclined at an angle of θ with respect to the
lattice cell boundary

A set of lattice offset configuration and lattice inclination configuration is studied, and the Chen

et al. (1998) scheme is applied to identify the solution dependence on the lattice configurations. For the

baseline study, a reference resolution between 16 and 17 cells is used for the length scale of channel

height, the slightly variation of resolution is a results of geometry matching to create the desired lattice

configuration.

The results of fluid streamwise velocity are plotted in figure 3.11 and figure 3.12. In all the sim-

ulations, a parabolic fluid velocity profile can be obtained, however, a strong lattice configuration de-

pendence was observed: for the lattice-offset configuration with exact lattice-aligned wall boundary,

simulation result agrees very well with theoretical value. When the solid boundary is slightly offsetted,

numerical solutions start to deviate from the analytical ones. For all the the lattice-offset configurations,

the solutions are under-predicted, and the solution is less accurate when fraction of fluid in the near

wall cell (pfluid value) is close to 1/2. For all the lattice-inclined configurations, very similar solutions

are obtained and they are under-predicted by about 8% when compared with the theoretical value. It
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Figure 3.11 Normalized streamwise velocity for typical lattice-offset configurations

Figure 3.12 Normalized streamwise velocity for typical lattice-inclined configurations

should be noted that in all the non-lattice-aligned configurations, velocity in the first near wall point are

significantly under-predicted, which directly shifts the predicted overall velocity profile.

Grid convergence study was also performed, and the convergence rate was measured as standard L1

norm:

L1 =
∑

n |Uylbm
n − Uytheory

n |
N

(3.24)
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The results are shown in figure 3.13 and figure 3.14 for lattice-offset configurations. Clearly, for exact

lattice aligned configuration, a second order accuracy of the solution is obtained, while there is an lattice

offset of the wall boundary, the solution reduced to first order accuracy. The solution shows strong pfluid

dependence, errors for lattice-offseted cases are at least a factor of 3 larger than that of lattice-aligned

case. When the fluid portion of the near wall cell is in the range between 0.5 and 0.9, the error is relative

large compared to other lattice offset (pfluid) value.

Figure 3.13 Grid convergence study for lattice-offset channel configurations: L1 vs. resolution

For lattice-inclined configurations, the error are plotted in figure 3.15 and figure 3.16. The achieved

order of accuracy is close to 1 for all the studied angles. The error shows small dependence on the

inclined angles.
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Figure 3.14 Grid convergence study for lattice-offset channel configurations: L1 vs. offset (pfluid)

Figure 3.15 Grid convergence study for lattice-inclined channel configurations: L1 vs. resolution
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Figure 3.16 Grid convergence study for lattice-inclined channel configurations: L1 vs. inclined angle
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CHAPTER 4. AN IMPROVED VOLUMETRIC BOUNDARY SCHEME

In this chapter, an improved volumetric boundary scheme is proposed, it applies a surfel scattering

correction process to improve solution accuracy on non-lattice aligned boundary configurations. The

new scheme takes into account of the local flow velocity variations for particle redistributions in its

scattered volume. Convergence study is performed to demonstrate the algorithm’s improvement on

solution accuracy. A number of validation cases are presented to prove its accuracy for flow predictions

with curved boundaries.

4.1 An improved LBM volumetric boundary scheme

As discussed in the last chapter, the original volumetric boundary scheme is only first order accurate

for non-lattice-aligned boundaries, the solution is also very sensitive to the wall boundary orientation

and location, this is mainly due to the piece-wise constant particle distribution assumption used dur-

ing surreal scattering process. To overcome this deficiency, the particle redistribution during surfel

scattering can be modified by introducing a scatter correction term ∆Γout,αi (x, t) into equation 3.5:

Q(x, t) =
∑
α

V α
i,pgram(x)
V α
i,pgram

[Γout,αi (x, t) + ∆Γout,αi (x, t)] (4.1)

By properly including the local flow variation into this correction term, it re-balances the scattered

particle distributions in the corresponding Pgram overlapped cells and reflects the non-homogeneity of

particle distributions in the Pgram volume. On the other hand, introducing such correction should not

compromise the exact local conservations in the original form.

Clearly, if we assume a local variation of particle distribution ∆fαi (x, t) inside the Pgram over-

lapped volume, the correction term can be directly obtained for each Pgram overlapped cells:

∆Γout,αi (x, t) = V α
i,pgram(x)∆fαi (x, t) (4.2)
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To approximate ∆fαi (x, t), one can rely on the Pgram equilibrium distribution in equation 3.22 and

decompose the velocity field uαi (x, t) inside Pgram volume into a mean value part ūαi (t) and a spatial

variation part ∆ui(x, t):

uαi (x, t) = ūαi (t) + ∆ui(x, t) (4.3)

By substitution and retaining only the leading order terms, one arrives:

∆fαi (x, t) = ρwi
ci ·∆ui(x, t)

T
(4.4)

For laminar flows the near wall velocity is linearly proportional to its distance from solid wall,

∆ui(x, t) can be calculated directly from the local velocity gradient ∂u
∂y and its location as:

∆ui(x, t) =
∂u

∂y
(yα(x)− yαi ) (4.5)

where yα(x) is the distance from Pgram overlapped cell x to facet α and yαi is the volume weighted

distance:

yαi =

∑
x y

α(x)V α
i,pgram(x)∑

x V
α
i,pgram(x)

(4.6)

This is the formed adopted by Li et al. (2004), the first-order scattering correction depends explicitly

on local velocity gradient and gives accurate prediction of flow past an impulsively started cylinder.

However, the near wall velocity gradient term ∂u
∂y is difficult to evaluate for under resolved situations,

especially for turbulent dominated near wall flow field. The issue is subsequently resolved via a conve-

nient approximation of ∆fαi (x, t) in the current study:

∆fαi (x, t) ≈ ραwi(1 +
ci · ūαi (t)

T
)
ci · (uα(x, t)− ūαi (t))

T
(4.7)

where ūαi (t) is an averaged velocity over Pgram-overlapped cells for surfel α with particle velocity ci:

ūαi =

∑
x u

α(x, t)V α
i,pgram(x)∑

x V
α
i,pgram(x)

(4.8)

and uα(x, t) is the velocity in cell x.

Equations 4.1, 4.2, 4.7 and 4.2 form a complete scattering correction procedure. With such a scatter-

ing correction, the outgoing particles are re-distributed based on local shear stress in overlapping cells

within each Pgram. And it’s straightforward to verify∑
i

∆Γout,αi (t) = 0 (4.9)

So adding such term does not alter the local conservation of mass.
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4.2 Convergence study with the modified scheme

The proposed volumetric scheme was applied to the lattice gravity channel study with various

lattice-wall configurations. With baseline resolution, figure 4.1 and figure 4.2 shows the predicted

streamline velocity distribution for both the lattice-offset configurations and lattice-inclined configura-

tions, current solution shows less dependence on the lattice-offset compared with solution from original

volumetric scheme. Both set of configurations give consistent results, particularly, the results for lattice-

offset configurations are almost overlapped with analytical solution, while the results for lattice-inclined

studies shows improvement over previous predictions, but there are still a slight deviation from the the-

oretical one.

Figure 4.1 Normalized streamwise velocity for typical lattice-offset configurations with current
scheme

Grid convergence study was performed for both the lattice-offset configurations (figure 4.3) and

lattice-inclined configurations (figure 4.5), compared to the previous result in figure 3.13 and figure 3.15,

the convergence rate is close to 2 for most of the lattice configurations, note for lattice offset configu-

ration with very small pfluid value, the solution convergence rate is still close to 1, but the errors have

been substantially reduced when compared with previous results.

Results are also directly plotted against the ones obtained from the original volumetric boundary

scheme (figure 4.4 and figure 4.6). With the applied modification, the overall error level was reduced
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Figure 4.2 Normalized streamwise velocity for typical lattice-inclined configurations with current
scheme

by a factor at least 2 for all the configurations.

Figure 4.3 Grid convergence study for lattice-offset channel configurations: L1 vs. resolution
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Figure 4.4 Grid convergence study for lattice-offset channel configurations: L1 vs. offset

4.3 Benchmarked cases with the improved volumetric LBM boundary scheme

In the following, we present the studies on a number of benchmarked cases to demonstrate the

accuracy of current scheme, particularly for flows involving curved boundaries.

4.3.1 Laminar flow past a circular cylinder with impulsive start

The first test case considered here is a time-dependent flow around an impulsively started circu-

lar cylinder. This is regarded as one of the classical prototypes of unsteady hydrodynamics, since the

early stage of the flow development reveals a range of rather complex and subtle phenomena, such as

boundary layer development, separation, vortex formation and secondary flows. In numerical simula-

tions, solving such a flow is rather challenging, difficulties come from the prediction of separations on

smooth curved geometry and steep changes of flow properties (such as the velocity and vorticity) on the

surface that associated with the impulsive start. The nonlinear nature of this problem also poses many

difficulties in terms of stability and accuracy for numerical methods.

The current study focuses on direct numerical simulations (DNS) at a moderate Reynolds number

Re = 550, with Re = UoD/ν, where Uo is the free stream velocity, D is the cylinder diameter and
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Figure 4.5 Grid convergence study for lattice-inclined channel configurations: L1 vs. resolution

ν the kinetic viscosity. In numerical setup, the upstream boundary is 20 diameters away, and the down

stream boundary is 40 diameters away from the center of the cylinder. The two vertical(side) boundaries

are 17 diameters away in each direction (figure 4.7). The resolution across the cylinder is 160 finest

cells, the total number of simulation cells is close to one million. simulation is run for a relatively short

amount of time, T ≤ 7, where T is the time non-dimensionlized by D/Uo, when the flow symmetry

does not broken.

A uniform velocity profile is imposed on the inlet boundary and a constant static pressure boundary

condition is imposed on the far field outlet, in the perpendicular y direction, a periodic boundary condi-

tion is used for simplicity. In the specification of initial condition, an irrotational potential flow solution

is imposed at T = 0+.

Simulations predicted a vorticity field and streamline field that are in good agreement with other

numerical results and experiment observations (figure 4.9 and figure 4.8). It can be clearly observed

that the secondary vortices appear within T = 1, it becomes bigger and stronger at T = 3 and T = 5.

Small scale flow structures also continue to grow in time, but remain confined by the primary vortices

up to T = 5.
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Figure 4.6 Grid convergence study for lattice-inclined channel configurations: L1 vs. inclined angle

Figures 4.10 and 4.11 show the velocity evolution along the symmetry axes behind the cylinder. It

is seen that the results match the experimental measurement well, especially in the enclosed wake region

where streamwise velocity is in the negative x-direction. Results from Loc (1980) under-estimated the

flow velocity in the wake region.

Figure 4.12 shows the time evolution of the separation/reattchement points on the cylinder surface.

Flow separation/reattchement on the cylinder surface indicates a zero wall shear stress, which are tightly

related to the generation and development of the primary and secondary vortices due to the impulsively

start of the cylinder. The result compares reasonable well with the one obtained by Koumoutsakos and

Leonard (1995), with a slightly under-estimation of the predicted separation/reattchement angles. For

the onset of the primary vortex, current study predicts a rapid development of the first separation point

(which occurs at T = 0.44), while vortex method (Koumoutsakos and Leonard (1995)) gives a rather

slow change of the first separation point (occurs at T = 0.20).
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Figure 4.7 Sketch of the simulation setup for an impulsively started cylinder with Reynolds number
Re = 550

4.3.2 Laminar flow past a circular cylinder with vortex shedding

The second problem studied here is a viscous flow past a circular cylinder at low Reynolds numbers

(50 ≤ Re ≤ 300, with Re = UoD/ν, where Uo is the free stream velocity, D is the cylinder diameter

and ν the fluid kinetic viscosity). In this Reynolds number range, the flow is unable to maintain steady

state and vortex shedding happens when the flow loses symmetry. The vortex shedding phenomenon

is regarded as one of the most challenging flow problems for unsteady flow prediction with numeri-

cal methods. A number of experimental investigations (Williamson (1989); Williamson and Roshko

(1990)) as well as numerical studies have been conducted (He and Doolen (1997); Henderson (1995);

Liu et al. (1998); Surmas et al. (2004)) for this type flows. The ability to capture major flow charac-

teristics such as vortex shedding frequency, drag components, and pressure distributions, indicates the

level of accuracy for the applied numerical methods.
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Figure 4.8 Streamline contours at Re = 550 and T = 5 for flow around an impulsively started cylin-
der. Top: current study; middle: vortex methods (Koumoutsakos & Leonard 1995); bottom:
experiment (Bouard & Coutanceau 1980)
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Figure 4.9 Vorticity iso-contours at Re = 550 for different time intervals T=1, 3, 5. Left: vortex
methods (Koumoutsakos and Leonard (1995)); right: current study
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Figure 4.10 Comparison of streamvise velocity distributions on the flow axis behind cylinder at time
intervals T = 1(red colors),T = 2 (pink colors) and T = 3 (grey colors). Lines: cur-
rent study; filled squares: experiment (Bouard and Coutanceau (1980)); cross symbols:
numerical method (Loc (1980))

In simulation, a large fluid domain was applied, with both the inlet and outlet boundary are placed

50D away from the cylinder (figure 4.13). On the inlet boundary, a uniform free stream velocity is

imposed. On the far-field outlet, a static pressure boundary condition is specified. The lateral boundaries

are also placed at 50D away from the cylinder center, where flow periodicity is assumed.

The initial flow field is specified by an irrotational flow field with small perturbations to quickly

trigger the flow unsteadiness. To calculate the flow shedding frequency, flow probes are placed inside

flow wake region to record the time histories of unsteady velocity/pressure variations. The simulations

are run for a sufficiently long time to ensure that the flow field is fully developed, a sample frequency of

1/3 Hz is used for the unsteady signals. The unsteady flow results are long time averaged to calculate

the drag coefficient.

Convergence study has first been performed for the Re = 100 case. From the grid convergence

study (table 4.1) which is based on a fixed simulation Mach number of 0.1, it can be seen that with

increased resolution, results for major flow characteristics, such as Strouhal number (St = fD/Uo,
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Figure 4.11 Comparison of streamvise velocity distributions on the flow axis behind cylinder at time
intervals T = 4(red colors),T = 5 (pink colors) and T = 6 (grey colors). Lines: cur-
rent study; filled squares: experiment (Bouard and Coutanceau (1980)); cross symbols:
numberical method (Loc (1980))

Figure 4.12 Time evolution of the separation/reattachment point on cylinder surface at Re = 550.
Black dots: vortex method (Koumoutsakos & Leonard 1995), line: current study.
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δh/D CD CDp CDf Cpb St

1/90 1.345 0.999 0.346 -0.702 0.164
1/120 1.339 0.997 0.342 -0.701 0.164
1/160 1.336 0.995 0.341 -0.701 0.164

Table 4.1 Grid convergence study for laminar flow past circular cylinder at Re = 100

Mach CD CDp CDf Cpb St

0.05 1.336 0.995 0.342 -0.696 0.164
0.10 1.336 0.995 0.341 -0.701 0.164
0.20 1.351 1.012 0.339 -0.717 0.164

Table 4.2 Mach convergence study for laminar flow past circular cylinder at Re = 100

where f is the vortex shedding frequency measured inside the wake region), drag coefficients (total

drag-CD, pressure drag-CDp and friction drag-CDf ), as well as base pressure coefficient (Cpb, the

cylinder surface pressure coefficient measured 180o degree from the front stagnation point), only show

slight variations. This indicates that a grid independent solution can be obtained with a resolution of

δh/D = 1/160 or higher. From the Mach convergence study (table 4.2), which is based on a fixed grid

resolution of δh/D = 1/160, it can be seen that when the simulation Mach number is small (≤ 0.1),

flow is nearly incompressible and the simulation results are almost unchanged. In the current study, a

simulation Mach number of 0.1 and a grid resolution of δh/D = 1/160 are applied for simulation of

all the studied Reynolds numbers.

The Strouhal number St and base pressure coefficient Cpb are the most import flow parameters for

vortex shedding studies since they are very sensitive to errors induced in the numerical methods (He and

Doolen (1997); Henderson (1995); Liu et al. (1998); Surmas et al. (2004); Braza et al. (1986); Calhoun

(2002)). The computed results are shown in Fig.4.14 and Fig.4.15 and compared with experimental

measurements (Williamson (1989); Williamson and Roshko (1990)) and other numerical predictions

(He and Doolen (1997); Henderson (1995); Liu et al. (1998); Surmas et al. (2004); Braza et al. (1986);

Calhoun (2002)). It can be clearly seen that the current approach gives accurate prediction when com-

pared with experimental results. This indicates that both the flow separation and the recirculation region

are well predicted. The LBM scheme with point-wise implementation of particle bounce back on the
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solid surface (Surmas et al. (2004)) over-predicts the flow shedding frequency, while the curvilinear

LBM scheme (He and Doolen (1997)) gives too much dissipation and tends to under-predict the shed-

ding frequency. The spectral element method (Henderson (1995)) slightly over-predicted the Strouhal

number and base pressure coefficient, indicating the predicted flow separation is slightly delayed and

the resulting wake size is relatively small when compared with experimental results. For Re ≥ 180, all

the 2D CFD methods can not predict the abrupt change of base pressure coefficient observed in exper-

iment, which is mainly due to the fact that in reality three dimensional flow transitions happens in this

Reynolds number range (Williamson (1989); Williamson and Roshko (1990)). Such phenomenon can

only be captured through 3D simulations.

The predicted drag coefficients are plotted in Fig. 4.16 and Fig. 4.17. It can be seen that the current

prediction compares well with results from spectral element method (Henderson (1995)), especially

for the prediction of friction drag coefficient. The pressure drag coefficient (as well as the total drag

coefficient) predicted by Henderson (1995) is slightly larger than the current predictions. This is because

the spectral element method gives a slightly later prediction of separation location and a smaller wake

size, both lead to a higher pressure drag since the pressure on the wake side will be reduced. The

other two LBM methods either over-predicted the total drag coefficient (Surmas et al. (2004)) or give

under-predicted values (He and Doolen (1997)), indicating they are less accurate than the current LBM

algorithm.

On table 4.3, the predicted drag coefficient and Strouhal number at Re = 100 and Re = 200 is also

compared with results from other numerical methods which solve the 2D incompressible Navier-Stokes

equations with various algorithms (Henderson (1995); Liu et al. (1998); Braza et al. (1986); Calhoun

(2002)). The predictions given by the current LBM approach can achieve the same accuracy level as

other methods or even slightly better (e.g., for Strouhal number prediction at Re = 100).

Finally, the instantaneous vorticity field for two Reynolds numbers (Re = 100 and Re = 200) are

presented in Fig. 4.18 and Fig. 4.19 as an illustration of predicted flow unsteadiness: Flow separation

on the cylinder surface and the evolution of alternating vortices behind cylinder can be clearly observed

for both cases. With a higher Reynolds number (Re = 200), flow tends to separate relatively late on

the cylinder surface and forms relatively stronger shear layer vortices with higher evolution frequency.

More complex secondary flow structures can be also observed in the near wake region. This is consistent
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Table 4.3 Comparison of Drag Coefficient and Strouhal number for laminar flow past circular cylinder
at low Reynolds number

Reference
Re = 100 Re = 200
Cd St Cd St

Williamson (1989)a – 0.164 – –
Braza et al. (1986)b 1.364 0.160 1.400 0.200
Liu et al. (1998)c 1.350 0.164 1.310 0.192
Calhoun (2002)d 1.330 0.175 1.172 0.202
Henderson (1995)e 1.350 0.167 1.341 0.197
Current Method 1.336 0.164 1.342 0.196

aExperiment
bFinite volume method, 2nd order accurate
cFinite volume method with multigrid, 2nd order accurate
dCartesian grid method
eSpectral element method

with other numerical predictions (He and Doolen (1997); Henderson (1995); Liu et al. (1998); Surmas

et al. (2004); Calhoun (2002)).

4.3.3 Turbulent flow past a two dimensional airfoil geometry with leading edge ice shape

In the third test, the usefulness of the current approach is further examined by applying it to to

simulate flows that involves relative complex geometries - a two dimensional turbulent flow over a

business-jet airfoil (GLC 305) with rime ice (212 ice shape) accrued on its leading edge (Addy et al.

(2003)). The iced airfoil profile and computational grid used in simulation is shown in figure 4.20. Since

the shape of rime ice is quite complex, it is difficult to generate high quality mesh with body-fitted grid

(Chi et al. (2005)).

On the flow condition, the freestream Mach number and static pressure are 0.12 and 20.5 psi, re-

spectively, and the Reynolds number based on the freestream condition and the airfoil chord length is

Re = 3.5 × 106. In the numerical setup, the inflow, outflow and two side boundaries are located 15

chord lengths away from the airfoil. At the inflow boundary, the freestream velocity is specified. At the

outflow boundary, a constant static pressure is imposed. At the other two boundaries above and below

the airfoil, periodic condition is assumed. The computation grid used a resolution of 1024 cells per
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Figure 4.13 Simulation setup for flow past a two dimensional circular cylinder

Figure 4.14 Strouhal number verus Reynolds number for laminar flow past circular cylinder at low
Reynolds number
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Figure 4.15 Base pressure coefficient verus Reynolds number for laminar flow past circular cylinder
at low Reynolds number

Figure 4.16 Total drag coefficient verus Reynolds number for laminar flow past circular cylinder at
low Reynolds number
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Figure 4.17 Friction drag coefficient and pressure drag coefficient verus Reynolds number for laminar
flow past circular cylinder at low Reynolds number

Figure 4.18 Instataneous vorticity fields for flow past a circular cylinder at Re = 100
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Figure 4.19 Instataneous vorticity fields for flow past a circular cylinder at Re = 200

chord length for the near wall flow region, this produced a y+ value for the first cell between 30 and

150 for the attached flows. The total number of cells is about 130,000 for the entire flow domain.

Figure 4.21 shows that the predicted airfoil lift/drag coefficients compare well with experiment

measurements by Addy et al. (2003). For the near stall situations, the airfoil lift coefficient is better

predicted by the current approach than by the method presented by Chi et al. (2005), which used a one

equation Spalart-Allmaras (S-A) (Spalart and Allmaras (1994)) turbulence model on a body fitted grid

with much higher near wall resolution. However, the airfoil drag coefficient is slightly over-predicted

at lower angles of attack and under-predicted at higher angles of attack.

Figures 4.22 and 4.23 show that the surface pressure coefficient distributions at several angle of

attacks (AOAs), it can be seen that when angle of attack is low and the flow is fully attached to the

airfoil surface, simulation can predict the surface pressure distributions very accurately. At higher

angle of attack where flow is separated from the lead edge near suction surface, the current simulation

over predicts the pressure coefficient (Cp) distributions. This could be due to the fact that in reality the

separated flows are fully three dimensional, while two dimensional simulations tends to over-predict the

size of the re-circulation zone since the physics of vortex stretching can not be captured. Nevertheless,

the overall predictions of pressure distribution are quite encouraging thereby validating current method.
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Figure 4.20 The studied airfoil profile (left) and computational grid used (right)

Figure 4.21 Lift (left) and drag (right) coefficient verus angle of attack (AOA) for the studied iced-air-
foil



www.manaraa.com

69

Figure 4.22 Surface pressure coefficient (Cp) distributions at AOA = 2 (left) and AOA = 4 (right)

Figure 4.23 Surface pressure coefficient (Cp) distributions at AOA = 6 (left) and AOA = 8 (right)

4.3.4 Turbulent flow past a three dimensional trapezoidal wing configuration

The next problem studied here involves three dimensional complex geometry configurations: the

trapezoidal wing (trapwing) with full span flap (FSF) configurations (figure 4.24), this generic high

lift configuration has been widely used in aerospace industry to improve the aerodynamic performance

of aircraft. It consists of four components: slat, main, flap and base pod elements (Johnson et al.

(2000); McGinley et al. (2005)). Both the main element and flap elements are swept and tapered. The

simulated model has a mean aerodynamic chord of 1.006 m and a span of 2.162 m. More detailed model

dimensions are provided in figure 4.25. As seen from the table, the flap deflection was 25 degrees and
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Figure 4.24 Schematic of the studied trapwing FSF model

Figure 4.25 Geometric settings of the studied trapwing FSF model (from Khorrami et al. (2002))

slat deflection was 30 degrees for the model studied here. In current configuration, wing brackets that

are used for structure support are included in the simulation, where available CFD studies tend to ignore

this geometry to simplifying the meshing process (Khorrami et al. (2002)).

Computations were conducted for a wide range of angles of attack based on the available experi-

mental database. All simulations were conducted under free-air conditions and results were compared

to the free air corrected experimental data. The freestream velocity was 60 m/s with an Mach num-

ber of 0.2, the Reynolds number is 4.3 million based on the mean aerodynamic chord and freestream
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Figure 4.26 Computational grid used for the studied trapwing FSF model (cross-sectional view at 50%
span location)

velocity, this exactly matches the experimental conditions conducted in the NASA Langley’s 14 by 22

ft wind tunnel (Johnson et al. (2000)). The LBM-VLES approach described in Chapter 2 is used for

simulating such an high Reynolds number flow. Figure 4.26 shows the computational grid used in the

current study, a resolution of 1.25 mm per cell-size is used for the flow region around the wing elements

surfaces, away for the wing elements, grid resolution was subsequently coarsed to reduced overall size

of the computation. There are 140M fluid cells and 8.7M surface elements used in one simulation.

All the simulations were run for around 100, 000 timesteps (corresponding to a physical time of 0.25

second) to achieve convergence of integrated forces. It took a wall clock time of 49.2 hours to finish

one simulation on a 128 processor AMD Dual-Core Opteron280 cluster.

Figure 4.27 and 4.28 show the variation of the simulated lift coefficient versus the angle of attack

(AOA) and the drag polar curve as compared with experimental datas from Johnson et al. (2000). It can

be seen that drag and lift are in general well predicted, though the under-predictions increase at higher
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AOA. Particularly, Maximum lift (CLmax) is under-predicted by about 8% compared to experiments.

Also, note that CLmax occurs at AOA = 30 in simulations compared to the experimental occurrence

at AOA = 33. To further assess the capability of LBM-VLES simulations, detailed surface pressure

predictions are also presented in figure 4.29 and 4.30, results are plotted against experimental data for

two different angle of attack: AOA = 6 and AOA = 20, at different spanwise locations for each

element. Results for the lower angle of attack (figure 4.29) indicate excellent agreement of computed

and experimental data, particularly in the wing tip region. At higher angle of attack (figure 4.30), results

again show good comparisons with experimental data, though the wing tip region is under-predicted.

Such under-predictions at higher AOA is directly related to the under-prediction of CLmax in figure 4.27

and may also be due to under-resolved wing tip vortex. The effects of flow transitioning from laminar to

turbulence that happens in reality could also impact the prediction of wing tip vortex, since in simulation

flow is assumed to be fully turbulent. Nevertheless, the overall predictions of pressure distribution are

quite encouraging thereby validating our simulation and build confidence in the application of current

approach for flow predictions that involves complex geometries.

Figure 4.31 shows instantaneous snapshots of predicted three dimensional flow vortical structures

(isosurfaces of λ2 colored by vorticity magnitude, where λ2 is a vortex identication criteria proposed

by Jeong and Hussain (1995)). Several flow features can be highlighted: a large wing tip vortex is

formed from the trailing edge of slat element outboard region, it is lifted off from the main element

top surface and extends downstream of the flow field. There are also substantial small structures of

flow unsteadiness in the slat cove region as well as in the gaps of slat-main element and main-flap

element. The effect of bracket geometries is also visible with intensified local flow unsteadiness nearby.

The ability to capture these unsteady flow phenomena for such complex geometry configuration could

provide insights into the underlying flow physics that related to the airframe noise generation.
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Figure 4.27 Lift versus angle of attack (AOA) for the studied trapwing FSF model
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Figure 4.28 Drag versus angle of attack (AOA) for the studied trapwing FSF model
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Figure 4.29 Surface pressure coefficient (Cp) distributions at AOA= 6 for the studied trapwing FSF
model. Columnwise, left: slat element; middle: main element; right: flap element. Row-
wise, top: 28% span location; middle: 50% span location; bottom: 98% span location
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Figure 4.30 Surface pressure coefficient (Cp) distributions at AOA = 20 for the studied trapwing
FSF model. Columnwise, left: slat element; middle: main element; right: flap element.
Rowwise, top: 28% span location; middle: 50% span location; bottom: 98% span location
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Figure 4.31 Instantaneous vortical flow structures (iso-surface of λ2 with a value of −300) colored by
vorticity magnitude at AOA= 10 for the studied trapwing FSF model
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CHAPTER 5. An EXTENSION OF VOLUMETRIC LBM BOUNDARY SCHEME

FOR SLIDING MESH SIMULATION

In this chapter, we discuss the motivations for developing an volumetric boundary scheme for en-

forcing sliding mesh interface condition in LBM sliding mesh simulation. The general concept of

sliding mesh approach is discussed first, followed by the details of LBM sliding mesh algorithms.

Volumetric boundary schemes are developed to enforce interface condition on the slidng-interface, its

implementations on a Cartesian grid is illustrated. Benchmark validations are provided to verify the

algorithm and demonstrate the accuracy and robustness of the applied scheme.

5.1 Motivation

The fluid flows associated with rotating systems are quite complex and characterized by a variety of

unsteady flow phenomena such as laminar-turbulent transitions, boundary layer separation and reattach-

ment, formation and evolution of vortices and above all, mixing and entrainment processes. Such flows

are found in almost every industrial process involving fans, propellers, blowers, pumps, stirred tanks,

turbo machinery components etc. In these situations, since the involved flow geometry configurations

are very complex and include both rotating and stationary parts (where the shape of related geometry

can not be generally described by a surface of revolution), it is extremely difficult to solve the problem

on a fixed grid system within a single reference frame.

However, for such problems, because the regularity of a rotational motion, the spatial domain may

be divided into two sub-domains, and each is represented by a separate grid system, e.g. an inner

grid that rotates with the rotating component and an outer grid that stays fixed in laboratory reference

frame. The rotation the inner grid produces a relative slide motion on the interface of the two grids. The

problem can then be solved on each grid system in a time-dependent manner, with an interface algorithm
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to couple the sub-domain flow solutions together (Rai (1986); Luo et al. (1993); Murthy et al. (1994)).

This is the so-called sliding mesh approach, it has been widely used in CFD for numerical simulation

of flows involving rotating geometry (Rai (1989a,b); Daskopoulos and Harris (1996); Hartmann et al.

(2004)).

Existing sliding mesh approaches solve the Navier-Stokes on body-fitted grids, with sliding-interface

well defined on the grid boundary. For LBM with non-body-fitted Cartesian grid system, there is a lack

of study on applying the sliding mesh approach, since it’s very challenging to define the sliding mesh

interface, and applying the corresponding interface algorithm to couple the flow solutions across it is

even hard. Fortunately, with the volumetric boundary scheme that being discussed in Chapter 3 & 4,

boundary conditions on curved surfaces can be realized through straightforward particle bounce-back

reflection or specular reflection, local conservations and detailed balancing on arbitrary boundaries can

be ensured by the simple particle surfel gathering/scattering process. The ability to exact conserve of the

hydrodynamic fluxes across across curved boundary allows to further extend the volumetric LB bound-

ary scheme for solving the the sliding-interface problem in LBM. Developing such a LBM sliding mesh

approach is beneficial: it not only enables accurate LBM predictions for this type of flow problem, but

also allows the use of very convenient Cartesian grid for the solution.

5.2 General concept of sliding mesh

The essential idea behind sliding mesh is straightforward, this can be illustrated with a simple two-

dimensional case where an eight-blade mixer is rotating inside a stationary tank, which has six stationary

baffles mounted on the wall (Figure 5.1).

5.2.1 Domain sub-division

The flow domain can be divided into two non-overlapping sub-domains, each can be treated as a

separate solution regime: the outer one that includes both the stationary tank walls and baffles is fixed in

the laboratory reference frame (inertial reference frame), and the the inner one that contains the rotating

mixer assumes a cylindrical shape and rotates with the moving geometry. The two sub-domains abut

with each other along the interface defined by the cylindrical shape, and the axis of this cylindrical
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Figure 5.1 Two dimensional example of sliding mesh simulation of flow around a rotating mixer inside
a baffled tank

shape coincide with the rotational axis of the mixer. By solving the problem in these two sub-domains

and exchange the flow information across the abutting interface (the so called “sliding mesh interface”),

the whole flow field solution can be obtained.

5.2.2 Local rotating reference frame and grids for the sub-domains

The solution in the inner domain can be directly transformed into a local rotating reference frame

(non-inertial reference frame) that being fixed with the rotating mixers, and the corresponding non-

inertial forces is applied to the flow governing equations in this domain. In this way the rotating ge-

ometries stay fixed when viewed from the non-inertial reference frame, so that they can be treated as

standard walls inside. It should be noted here that any type of solid walls can be included into this sub

domain, as long as they share the same rotation motion as the non-inertial reference frame that has.

For wall that are not stationary when observed in the non-inertial reference frame, its shape has to be a

surface of revolution about the rotation axis, so that a rotating wall boundary condition can be directly

applied to it in the simulation.

Through such a reference frame transformation, a fixed grid system can then be applied to discretize

the inner domain, so that there is no relative motion between geometry and underlying grid. In other

words, when viewed from the laboratory reference frame (inertial reference frame), the grid system for

inner domain rotates with the mixer. The discretization of outer-domain is straightforward since no
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moving parts involved, and a separate grid system can be used.

5.2.3 Interface coupling

By this domain sub-division and applying the frame of reference transformation for the inner do-

main, both sub-domains can be represented by a separate fixed grid system in its own reference frame,

thus avoids the problem of handling relative motions between the rotating components and the underly-

ing grid. Time-dependent flow solutions can be obtained for each individual domain, coupled by proper

sliding-interface algorithm that account for the sliding motion of the two grids. In this way, the sliding

mesh interface can be viewed as a transparent fictitious boundary separating the two domains, if the

neighboring computational cell boundaries are exactly matched (paired) on both sides, flow informa-

tion can be directly exchanged from the two sides (with proper velocity transformations). However,

due to the rotation of the inner grid, the resulting sliding motion along the cylindrical interface between

the two grids could produce a mismatch of corresponding computation cell boundary on each side, this

requires sliding-interface algorithm to be able to exchange the flow information along the non-matching

cell boundaries as well.

In the solution process, the sliding-interface algorithm exchanges flow information between the

two domains at each time step, and can effectively couple the solutions on both sides of the interface.

Since the sliding mesh interface serves only for computational purpose, it should produce minimum

disturbance on the flow, this requires the sliding-interface algorithm to be able to maintain a smooth

solution across the interface, as well can ensure the corresponding local conservations of flow field

variables such as density and momentum. These are the key factors for accurate and robust prediction

with sliding mesh approach.

5.3 LBM sliding mesh algorithm

5.3.1 Solving LBE in a non-inertial reference frame

For flow field inside the local rotating reference frame, the solution is obtained by introducing a

force population Fi(x, t) into the collision term of the D3Q19 LBGK model:

fi(x+ ci, t+ 1) = fi(x, t)−
1
τ

(fi(x, t)− feqi (x, t)) + Fi(x, t) (5.1)
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Where the force population Fi(x, t) can be directly connected to a external body force fieldA(x, t) via

(Guo et al. (2002a)):

Fi = (1− 1
2τ

)ρwi(
(ci − u

′
(x, t)) ·A(x, t)
T

+
(ci − u

′
) · (ci −A(x, t)
T 2

) (5.2)

it is worth pointing out that such a body force treatment has a second order accuracy in velocity space

and is essential to the accuracy of numerical simulation with non-inertial forces.

The equilibrium distribution feqi take the same form as in equation 2.4, except that the velocity

u(x, t) is replaced by u
′
(x, t) which is a simple shift of pre-collide velocity byA(x, t)/2 :

u
′
(x, t) = u(x, t) +

A(x, t)
2

(5.3)

For a non-inertial reference frame that rotate with angular velocity of Ω(x, t) about its axis, the

corresponding inertial force is defined as:

A(x, t) = −Ω(x, t)× (Ω(x, t)× r(x, t))︸ ︷︷ ︸
centrifugal force

− 2Ω(x, t)× u′(x, t)︸ ︷︷ ︸
Coriolis force

− dΩ(x, t)
dt

× r(x, t))︸ ︷︷ ︸
Euler force

(5.4)

where r(x, t) is the position vector measured from the origin of the non-inertial reference frame. and

velocity vector are the ones observed in the non-inertial reference frame.

Here the first term on RHS of equation 5.4 represents the centrifugal force Coriolis force, and the

second term is the Coriolis force, the third term corresponds to the Euler force. For cases with constant

rotation, the Euler force goes to zero.

The velocity transformation between inertial reference frame and the non-inertial reference frame

takes the following form:

uB(x, t) = uA(x, t)−Ω(x, t)× r(x, t) (5.5)

where uB(x, t) is the relative velocity observed in the non-inertial reference frame B and uA(x, t) is

the absolute velocity observed in the inertial reference frame A.
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The following notations are also adopted to avoid further confusion: the computational domain for

outer part of the fluid region is represented by A and is simulated in the inertial reference frame A,

while the computational domain for inner part is represented by B and is simulated in the non-inertial

reference frame B. For flow variable with the subscript of A or B, it means that the variable (vectors) is

observed in the inertial reference frame A or non-inertial reference frame B, while the use of subscript of

A or B means that flow variable is defined based on information from the outer computational domain

A or inner computational domain B .

5.3.2 Discretization of sliding mesh interface

Handling flow transitions across the sliding mesh interface is the most challenging part of an sliding

mesh simulation. A good representation of the sliding mesh interface is very critical for both accuracy

and efficiency of the applied algorithms. In this study, a cylindrical double layered transparent surface

is applied to represent the sliding mesh interface, with each layer stay fixed to its neighboring compu-

tational domain, e.g. the inner layer of the interface is fixed with the inner domain B and the outer one

is fixed with domain A. Flow transition can be dynamically realized between these two layers when the

two grids slide.

The discretization of both layers results in an identical set of surface mesh: each of the cylindrical

layer is divided into m sets of rings orthogonal to the rotation axis, and each set of ring layer is faceted

into a set of surface elements of the same size within the ring. Since the ring surface is axisymmetric,

the surface elements are faceted with identical shape and size with each ring. At time T = 0, there is no

gap between the inner and outer layer surface elements, the initial flow field can then be covered by one

set of the Cartesian grid, with the two layers of surface mesh separating the two computational domains.

The two layers of surface mesh serve as fictitious boundaries for the associated computational domain,

and the volumetric LBM boundary algorithm discuss in Chapter 3 & 4 can be applied to construct the

“interface” dynamics for flow transition across the sliding mesh interface.

Figure 5.2 gives an example of the discretized double layer interface in two dimension (only part

of the interface is shown here). The red solid line represents the discretized outer layer of interface,

while the blue dashed line is the inner layer interface mesh. Please note surfel α in domain A forms

a matching pair with surfel β in domain B . A Pgram set along a diagonal direction is also outlined to
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illustrate possible interface dynamics, e.g. surfel α can gather/scatter particles from its (red) Pgram in

domain A, while surfel β can collect/redistribute particles via the blue Pgram in domain B .

Figure 5.2 Sliding mesh interface is represented by a set of double-layer surfels

5.3.3 A volumetric boundary algorithm for sliding mesh interface condition

The two-layer sliding mesh interface surfels can interact with their neighboring particles via surfel

gathering/scattering process to generate the desired flow dynamics. In other word, the sliding mesh

interface algorithm can be viewed as a special case for realizing surface dynamics in LBM. There are

two fundamental requirement for such a sliding mesh interface algorithm: first, it need to communicate

accurately of the flow information on both sides of the interface so that a closed form solution can

be obtained for the whole flow domain; second, it should ensure the local conservations of mass and

momentum when exchanging information through the interface.

To construct such a surface dynamics, we can directly utilize the specular reflection algorithm dis-

cussed in Chapter 3 & 4, since it have nice features to conserve both the local mass and tangential
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momentum. It can be shown that by simply replacing the tangential velocity with the full velocity

vector in the constructed surfer equilibrium, the resulting algorithm is able to conserve both the mass

and total momentum flux across the sliding mesh interface. This modified specular reflection algorithm

forms the baseline for the current sliding mesh interface algorithm.

In the following, since most of the process details regarding the specular reflection boundary con-

dition, such as surface gather and scattering procedure, surface collision and mass correction for local

mass conservation, have already been addressed in Chapter 3 & 4, the details will be skipped and only

the most relevant ones of the sliding-interface algorithm will be discussed.

5.3.3.1 Construction equilibrium state for interface surfels

For surfel α in domain A on figure 5.2, its surfel equilibrium state along ith directly can be con-

structed as:

fα,eqi,A (t) = ρ̄αwi[1 +
ci · ūαA
T

−
(ci · ūαA)

2T

+
(ci · ūαA)2

2T 2
+

(ci · ūαA)3

6T 3
−

(ci · ūαA)
2T 2

(ūαA)2] (5.6)

As noted already, the use of full velocity vector here is essential for the conservation of mass and

total momentum flux across the sliding mesh interface.

Here ρ̄α is the averaged density based on sampled values from both sides:

ρ̄α =
1
2

(ρα,A + ρα,B ) (5.7)

and ūαA are mass averaged velocity based on sampled values from both sides:

ūαA =
1

2ρ̄α
(ρα,Auα,AA + ρα,Buα,BA ) (5.8)

In the above, ρα,A represents sampled density value for surfel α from the domain A, which can

be calculated directly based on its Pgram. ρα,B represents sampled density value for surfel α from

the domain B and its calculation is done through its surfel match pair β. uα,AA represents the sampled

velocity value for surfel α from the domain A, and uα,BA is the sampled one for surfel α from domain

B . Both velocities are observed in reference frame A.
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Figure 5.3 Illustration of mis-matching of surface elements on sliding mesh interface: Grid system at
T=0 (Left) and T > 0 (Right)

For surfel β in domain B , the procedure to construct surfel equlibrium states is the same, except the

velocities need to be observed in reference frame B.

It should be pointed out that by using the two-sides averaged values in the equilibrium distribution,

the solutions in both domain A and domain B are closely coupled together.

5.3.3.2 Surfel matching algorithm

To calculate the averaged density and velocity value in equation 5.7 and equation 5.8, samplings of

density and velocities in both domains on each side of surfel are needed . If the sampled region is in the

same domain as surfel is, the process is straightforward and can be directly calculated via surfel’s Pgram

(as described in chapter 3). However, if the the sampled region is not in the same domain, the sampling

process can only be done through surfel’s matching pair in the neighboring domain. The process is

non-trival, since the underling surface mesh for both layers may not necessary coincide with each other

during the simulation.

An example is used here to illustrate this surfel mismatch situation (Figure 5.3): At T = 0, both the

inner and outer layer of surface mesh coincide with each other, and when T > 0, the inner grid rotates

about an angle of θ, this results in a mis-match of inner and outer layer of surface mesh.

For mis-matched situation, due to the identical size and shape for surface elements inside a given
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ring, each surface element in the outer domain A can only intercept at most two surface elements in

the inner domain B any given time (Figure 5.4). In this example, surfel α in domain A establishes a

Figure 5.4 Matching surfel α in domain A with surfel β1 and β2 in domain B

matching pair set of surfel β1 and β2 in domain B .

A matching ratio ω(t) can be defined based on the geometrical information of the matching pair set

as:

ω(t) =
Aβ1B→αA

Aα
(5.9)

where Aβ1B→αA is the projected area of surfel β1 to surfel α.

Clearly,

Aα = Aβ1B→αA +Aβ2B→αA (5.10)

or

1− ω(t) =
Aβ2B→αA

Aα
(5.11)

with Aβ2B→αA being the projected area of surfel β2 to surfel α.

With this definition, the sampling of density and velocity from domain B side for surfel α (located

in domain A) can be directly linked to the sampling of density and velocity for its matched pair surfel

β1 and β2 :

ρα,B =
Aβ1B→αAρβ1,B +Aβ2B→αAρβ2,B

Aα

= ω(t)ρβ1,B + (1− ω(t))ρβ2,B (5.12)
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uα,BA =
Aβ1B→αAρβ1,Buβ1,B

A +Aβ2B→αAρβ2,Buβ2,B
A

Aαρα,B

=
ω(t)ρβ1,Buβ1,B

A + (1− ω(t))ρβ2,Buβ2,B
A

ρα,B
(5.13)

In this way, sampling across different domain can be realized through its match surfel pair in that

corresponding domain.

The matching ratio ω(t) also defines a physical process on the amount of flow field information

that the surfel can receive from its matching pair: in this example, surfel α receives ω(t) part of flow

field information from surfel β1 and 1− ω(t) part of flow field information from surfel β2. Its value is

uniquely defined for each interface surfel element at every timestep with given mesh size and rotating

speed, and it is bounded by 0 ≤ ω(t) ≤ 1. It should be noted here that due to the equal-size of all the

surface elements in each ring, their corresponding matching ratio are the same at every time sequence,

and these values can be pre-computed before the simulation so that the overall computation cost can be

minimized.

5.3.3.3 Solution procedure

The standard surfel gathering, collision and scattering process can be directly applied to both sides

of the interface surfel, and the overall solution procedure is outlined in the following steps:

1. Gather incoming states and sample mass and momentum from neighbor cells on both sides of

sliding mesh interface.

2. Match sliding mesh interface elements between outer and inner surfaces. As mentioned earlier,

each surface element on one side communicates with two surface elements on the other side at any

given time. The matching ratio of two surface elements depends on the sliding mesh rotational

position.

3. Transform the surface velocity from local rotating reference to stationary laboratory reference

frame inside sliding mesh.
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Figure 5.5 Solution procedure for the proposed LBM sliding mesh approach

4. Calculate averaged values of mass ρ and momentum ρufor each matched sliding interface ele-

ment pairs in ground fixed reference frame. Then the momentum values inside sliding mesh are

also calculated

5. Construct equilibrium states on interface surfel elements in both domains

6. Apply the surfel collision in all surfels.



www.manaraa.com

90

7. Ensure local mass conservation.

8. Scatter outgoing particles back to its neighboring cells.

The process is sketched in figure 5.5:

5.4 Benchmarked cases with the LBM sliding mesh approach

Based on the sliding mesh algorithm presented in the previous, time accurate numerical validations

were conducted for three different cases: 2D direct numerical simulation of co-rotating cylinder flow,

2D direct numerical simulation of cross flow past a single rotating blade and a 3D turbulent flow past a

benchmark D4119 Propeller.

5.4.1 Two dimensional laminar flow driven by a rotating cylinder

As a first test, a simple test case of a two dimensional couette flow being driven by two concentric

rotating cylinders (figure 5.6) is considered to examine the accuracy of the scheme. The configuration

includes two coaxial cylinders with radius of r and 2r each, the inner cylinder is rotating at a constant

angular velocity ωo and the outer cylinder is fixed. The simulation Reynolds number based on cylinder

radius r and a characteristic velocity magnitude of uchar = rωo is set to 147, For such a low Reynolds

number flow, the resulting flow field is axi-symmetric with a well-known couette flow profile. In simu-

lation, the characteristic velocity is mapped to a fixed lattice velocity with corresponding mach number

of M = 0.15. This results in a fluid viscosity of ν = 0.01 in lattice units when a reference resolu-

tion of 16 cells is applied to across the length of cylinder radius. The corresponding relaxation time of

τ = 0.53.

Grid convergence studies were conducted to verify the accuracy of the scheme. For this flow con-

figuration, since it’s fully axisymmetric, the location of sliding interface can be placed at any arbitrary

distance way for the solid wall, and the resulting sliding mesh prediction should be less dependent on

the sliding mesh interface location. This was also being verified in the current study. Figure 5.7 and

figure 5.9 show comparison of normalized tangential velocity and pressure distribution along the flow

axis at three grid resolutions (r/δ = 16, 32, 64) for a sliding mesh interface location at d/r = 1/32 for

the inner cylinder. Figure 5.8 and figure 5.10 show comparison of normalized tangential velocity and
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Figure 5.6 Flow configuration for LBM sliding mesh simulation of two-dimensional rotating flow. The
sliding mesh interface is represented by a blue line and is set at a distance of d from the
inner cylinder surface

pressure distribution along the flow axis at three grid resolutions for a sliding mesh interface location at

d/r = 1/2 for the inner cylinder. The results are plotted against the predictions without sliding mesh

as well (so that a rotating wall boundary condition is directly applied to inner cylinder wall). It can be

observed that all the sliding mesh results agree well with the one that without sliding mesh applied, and

a good grid convergence can be obtained for both sliding mesh interface locations. The solutions near

sliding mesh interface does not show apparent discontinuity, which indicates that a smooth transition

of flow field across sliding mesh interface can be obtained for such a stressful situation with very low

lattice viscosity. Figure 5.11 measures the error of velocity field as a function of grid resolution, and

the error is calculated by comparing the sliding mesh solution (denoted by usldm
n ), with the one that
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no-sliding mesh approach was applied (denoted by uno-sldm
n ):

L2 =

√∑
n(usldm

n − uno-sldm
n )2

N
(5.14)

Figure 5.7 Tangential velocity distribution along flow axis for sliding mesh interface located at a dis-
tance of r/32 away from the inner cylinder

Figure 5.8 Tangential velocity distribution along flow axis for sliding mesh interface located at a dis-
tance of r/2 away from the inner cylinder
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Figure 5.9 Non-dimensional pressure distribution along flow axis for sliding mesh interface located at
a distance of r/32 away from the inner cylinder

Figure 5.10 Non-dimensional pressure distribution along flow axis for sliding mesh interface located
at a distance of r/2 away from the inner cylinder

For all the three tested sliding mesh interface location, the errors show nearly exponential decay

with increased grid resolution, the slope of the decay rates indicate that current scheme is second order

accurate in space. With same resolution, the error does not show strong dependence on the sliding mesh

interface location, this also proves that current scheme is capable of achieving good results consistently
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Figure 5.11 Grid convergence study for three typical sliding mesh interface locations

even the distance of sliding mesh interface is very close to the rotating surface.

5.4.2 Two dimensional laminar flow past a rotating single-blade baffle

In the second test, a two dimensional crossing flow past a single rotating blade configuration is

considered to verify the implementation of current sliding mesh approach. The blade is rotating at

clockwise direction and the flow is also confined by stationary walls on both the top and bottom side

(figure 5.12). The flow domain is covered by uniform size grid with 32 cells being used for the full

length of the blade, and a rotating angular velocity of 0.0327 radius per lattice time step is chosen, the

flow Reynolds number based on blade radius and blade tip velocity is 115. Contours of instantaneous

flow field velocity magnitude is presented in figure 5.13. It can be seen that a reasonable flow field is

obtained for this configuration, and local velocity magnitude is high when the the blade tip passes by the
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region close to top wall, this corresponds to the time that blade tip velocity are in-line with the incoming

flow velocity, for the flow region between bottom wall and rotating blade, the flow is de-accelerated due

to the counter directions of blade tip velocity and incoming free stream velocities. As seen from the

snapshots, the smooth distribution of velocity field also indicate the treatment of sliding mesh interface

in current approach is accurate.

Figure 5.12 Flow configuration for LBM sliding mesh simulation of a two-dimensional cross flow past
single rotating blade. The sliding mesh interface is indicated by a red color

5.4.3 Three dimensional turbulent flow past an DTMB 4119 Propeller

In the third test, a complex benchmark case of a propeller rotating in a flow field with uniform

incoming velocity was selected to validate the accuracy of current sliding mesh approach. The propeller

involved in this study is a symmetric three bladed propeller designed in the 1960s, known as DTMB

4119 propeller, it has zero skewed section profiles and operates at high speeds of rotation. This propeller

has been widely used as standard benchmark geometry to validate lifting surface design methods (Jessup

(1998); Gindroz et al. (1998)).

Figure 5.14 shows a schematic of the DTMB 4119 propeller geometry, the propeller has a radius of

R = 152.4 mm and rotates at a speed of n = 10 rps (revolutions per seconds). In the open water test,

the propeller has a advance velocity magnitude V , which corresponds to a propeller advance coefficient

J that generally being used to describe the its operation:

Advance coefficient: J =
V

nD
(5.15)
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Figure 5.13 Instantaneous vorticity field for 2D cross flow past single rotating blade

In simulation, the advancing motion of propeller in open water test is translated into a flow problem

with uniform incoming velocity so that propeller only has a relative rotating motion with respect to

the simulation domain. A cylindrical sliding mesh region that tightly enclose the propeller was used

in simulation (Figure 5.15), a fine grid resolution with 200 cells per blade radius length was applied
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Figure 5.14 Schematic of the DTMB 4119 propeller geometry

Figure 5.15 Sliding mesh configuration for the DTMB 4119 propeller. The red cylindrical region is
defined as sliding mesh domain

for this region. Variable resolutions are applied and the grid system used is shown in figure 5.16. The

overall fluid cells are 52.4M and surfels are 1.3M , on a Linux Xeon 5160 (dual-core) cluster with 108

cores, it takes 19.4 hours to complete 12 revolution ( corresponding to a physical time of 1.2 second, or

13.4k timesteps).

The propeller is simulated in a wide range of advance coefficient around the design operational
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Figure 5.16 Grid system used for current DTMB 4119 sliding mesh simulation

point J = 0.833, a typical Reynolds number based on the blade tip velocity 2rnπ and blade radius is

1.46×10−6. For such a high Reynolds number turbulent flow, the sliding mesh approach here is coupled

through the LBM-VLES turbulence modeling approach for the solution. The related PDE sliding mesh

algorithm can be referenced at Sun et al. (2009).

Our simulation results are compared directly with the open water test data of Jessup (1989, 1998).

At given operating condition, the performance of the propeller is characterized by a set of non-

dimensional coefficients based on the generated propeller thrust T and torque Q:

Thrust coefficient: KT =
T

ρn2D4
(5.16)

Torque coefficient: KQ =
Q

ρn2D5
(5.17)

Propeller efficiency: ηo =
KTJ

KQ2π
(5.18)

The predicted propeller performance result is directly compared with available open water data and it’s

shown in figure 5.17, 5.18 and 5.19.

It can be seen that current LBM sliding mesh approach gives reasonable good predictions on pro-

peller thrust coefficient, torque coefficient and efficiency, especially when the propeller advance coeffi-

cient is low. When J = 1.0, large discrepancy between the prediction and experiment can be observed.

It could be due to the fact that cavitation effects that occurs in experiment can not be predicted by

current single phase simulation.

Figure 5.20 shows snapshots of the three dimensional vortical flow structures around the propeller,
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Figure 5.17 Thrust coefficient comparisons: LBM sliding mesh results vs. experimental data

the vortical flow structure is represented by iso-surfaces of λ2 and is colored by the local pressure.

These images clearly demonstrate the complexity of the flow.

The instantaneous vorticity distributions across propeller center plane is shown in figure 5.21, the

resulting vorticity field is very smooth and shows no discontinuity across the sliding mesh boundary.

Figure 5.22 shows comparisons of circumferential averaged velocity components between the ex-

periments and the LBM based sliding mesh simulations for the operating condition corresponding to

J=0.833. The velocities are compared downstream of the propeller at X/R=0.3281, where X is positive

downstream, with its origin at the propeller reference line. Note that all velocities are normalized by

the advance speed, V. The data in figure 5.22 is presented as line plots of velocity versus radius of the

propeller. It shows good agreements with experimental data at all locations, although the axial velocity

is slightly over predicted away from the center.

Figure 5.23 shows similar analysis of the phase-averaged velocity at the same downstream location.



www.manaraa.com

100

Figure 5.18 Torque coefficient comparisons: LBM sliding mesh results vs. experimental data

All the data is presented as line plots of velocity versus blade angle. Representative measurements are

compared at r/R=0.3, 0.7, 0.9 and 0.924. Again the computed data compares reasonably well to the

experimental data.
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Figure 5.19 Propeller efficiency comparisons: LBM sliding mesh results vs. experimental data



www.manaraa.com

102

T0 T1
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T4 T5

Figure 5.20 Iso-surface of instantaneous vortical flow structures (λ2 magnitude of −10 colored by
pressure)
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Figure 5.21 Instantaneous vorticity magnitude distribution across propeller center plane
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Figure 5.22 Comparison of circumferential averaged velocities at location of X/R=0.3281
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X/R=0.3281, r/R=0.3 X/R=0.3281, r/R=0.7

X/R=0.3281, r/R=0.9 X/R=0.3281, r/R=0.924

Figure 5.23 Comparison of phase averaged velocities at location of X/R=0.3281
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Major accomplishment

In this dissertation, several contributions have been made, including the improvement of a volumet-

ric LBM boundary conditions and the formulation of a volumetric LBM sliding-mesh interface approach

for performing sliding mesh simulations. The following is a summary of these accomplishments.

6.1.1 Development of an improved volumetric LBM boundary scheme

An improved volumetric LBM boundary scheme has been successfully developed for improving the

solution accuracy of flow with an arbitrarily located solid wall. The proposed scheme abandons the as-

sumption of homogeneous particles distributions for scattered backed particles in a boundary condition

process, and introduces a scattering correction procedure to redistribute particles scattered back from

the surface, the correction procedure incorporates local flow velocity variations to account for the in-

homogeneity of the particle distribution within the affected volume, and does not compromise the local

conservation of mass. It demonstrates close to second order accuracy for flows with arbitrarily located

surface, and shows less solution sensitivity to actual lattice/wall configuration. A number of typical

flow benchmark problems have been validated, the studies show that the current boundary approach can

obtain accurate flow solutions on problems with curved boundary.

6.1.2 Development of a volumetric LBM sliding mesh interface approach for sliding mesh sim-

ulation

The proposed volumetric LBM boundary condition has been extended to enforce sliding-mesh inter-

face condition with Cartesian grids, where a modified volumetric specular reflection boundary scheme

is applied to realize the sliding mesh interface condition. The scheme applies two-sides averaged surfel
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velocity and density values to construct surfel equilibrium distribution and couples the flow solutions

from both sides of the sliding mesh interface, the conservation of local mass is ensured by applying

an appropriate mass correction in the scheme, and conservation of local momentum across the sliding-

mesh interface is achieved by imposing zero viscosity for the modified specular reflection boundary

scheme. An overall LBM sliding mesh procedure is presented to enable simulation of flow involving

rotating geometries. A flow past a rotating propeller case has been simulated to demonstrate the current

approach’s capability and accuracy for performing sliding mesh simulation with true rotating geometry.

6.2 Recommendations for future work

The following topics are suggested for future work:

• Further algorithm refinement to improve solution dependence on lattice-wall configuration.

It should be noted that with current improvement, there is still a visible solution dependence on

lattice-wall configurations, particularly when comparing solutions from lattice-aligned config-

uration and non-lattice aligned configuration. To improve this, one of the possible ways is to

include the flow non-equilibrium information into the scattering correction procedure, since cur-

rent improvement is purely based on an equilibrium approximation of particle distribution within

the scattered volume, including the flow non-equilibrium information is expected to give more

accurate presentation of local particle distributions, thus may provide improved solution.

• Extension of current volumetric scattering correction idea to LBM multiphase wetting wall model.

We have conducted some preliminary research in this multiphase area and found that the Shan-

Chen type wall potential wetting model is also very sensitive to actual lattice-wall configuration.

How to incorporate the ideas from current study to accurately model the wall wetting phenomena

is needed.

• Extension of current sliding mesh interface algorithm to handle more general interface motion.

The current LBM sliding mesh interface algorithms is presented for solving problems involving

geometry with rigid body rotation, however, the fundamental ideas behind this numerical scheme

is not limited to this constraint and can be applied to any interface problem that involves relative
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motions between flow solution domains. Developing suitable interface algorithm to handle more

general interface motion is a nature extension of current work.
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